Forecasting respiratory tract infection episodes from prescription data for healthcare service planning

Abstract

Changing weather patterns affect the incidence of respiratory tract infections, which causes huge economic burden for healthcare services. Early warning for the infection may help healthcare service providers to prepare for an epidemic on time. The purpose of the current research is to explore the relationship between respiratory tract infection episodes and climatic factors and to predict the number of daily episodes in different weather zones of active weather stations in Bangladesh. Prescription data collected from clinics are integrated with climatic factors of the nearest weather stations, and the integrated dataset is used to predict the daily respiratory tract infection episodes. We apply panel generalized linear models and show that the number of episodes increases to a greater extent for increasing magnitude of rolling standard deviation of relative humidity and rolling mean of wind speed. A 7-day-ahead forecast of number of episodes based on rolling window models of regression tree, random forest, support vector regression, and deep neural network is estimated to know the severity of epidemic for healthcare planning. A further 1-day-ahead confirmation forecast is produced to assess the necessity of healthcare service plan adopted based on a 7-day-ahead forecast. Root mean squared forecast errors computed for both 7-day-ahead and 1-day-ahead forecasts from these models provide qualitatively similar results, except for three weather stations where an unusually high number of episodes are observed because of extreme climate and high level of air pollution.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    Alencar, A.P.: Seasonality of hospitalizations due to respiratory diseases: modelling serial correlation all we need is poisson. J. Appl. Stat. 45(10), 1813–1822 (2018)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Althouse, B.M., Flasche, S., Thiem, V.D., Hashizume, M., Ariyoshi, K., Anh, D.D., Rodgers, G.L., Klugman, K.P., Hu, H., Yoshida, L.M., et al.: Seasonality of respiratory viruses causing hospitalizations for acute respiratory infections in children in Nha Trang, Vietnam. Int. J. Infect. Dis. 75, 18–25 (2018)

  3. 3.

    Araújo, F.H.D., Santana, A.M., Neto, P.D.A.S.: Using machine learning to support healthcare professionals in making preauthorisation decisions. Int. J. Med. Inform. 94, 1–7 (2016)

    Article  Google Scholar 

  4. 4.

    Blangiardo, M., Finazzi, F., Cameletti, M.: Two-stage bayesian model to evaluate the effect of air pollution on chronic respiratory diseases using drug prescriptions. Spat. Spatio-temporal Epidemiol. 18, 1–12 (2016)

    Article  Google Scholar 

  5. 5.

    Cai, M., Pipattanasomporn, M., Rahman, S.: Day-ahead building-level load forecasts using deep learning versus traditional time-series techniques. Appl. Energy 236, 1078–1088 (2019)

    Article  Google Scholar 

  6. 6.

    Choi, Y., Ahn, H., Chen, J.J.: Regression trees for analysis of count data with extra Poisson variation. Comput. Stat. Data Anal. 49(3), 893–915 (2005)

  7. 7.

    Eccles, R.: An explanation for the seasonality of acute upper respiratory tract viral infections. Acta Otolaryngol. 122(2), 183–191 (2002)

    Article  Google Scholar 

  8. 8.

    Erbas, B., Hyndman, R.J.: Sensitivity of the estimated air pollution-respiratory admissions relationship to statistical model choice. Int. J. Environ. Health Res. 15(6), 437–448 (2005)

    Article  Google Scholar 

  9. 9.

    Fang, K., Jiang, Y., Song, M.: Customer profitability forecasting using big data analytics: A case study of the insurance industry. Comput. Ind. Eng. 101, 554–564 (2016)

    Article  Google Scholar 

  10. 10.

    Gurley, E.S., Salje, H., Homaira, N., Ram, P.K., Haque, R., Petri Jr., W.A., Bresee, J., Moss, W.J., Luby, S.P., Breysse, P., et al.: Seasonal concentrations and determinants of indoor particulate matter in a low-income community in Dhaka, Bangladesh. Environ. Res. 121, 11–16 (2013)

    Article  Google Scholar 

  11. 11.

    He, W.: Load forecasting via deep neural networks. Procedia Comput. Sci. 122, 308–314 (2017)

    Article  Google Scholar 

  12. 12.

    Lahouar, A., Slama, J.B.H.: Day-ahead load forecast using random forest and expert input selection. Energy Convers. Manag. 103(12), 1040–1051 (2015)

    Article  Google Scholar 

  13. 13.

    Li, Y., Peterson, M.E., Campbell, H., Nair, H.: Association of seasonal viral acute respiratory infection with pneumococcal disease: a systematic review of population-based studies. BMJ Open 8(4), e019743 (2018)

    Article  Google Scholar 

  14. 14.

    Liu, Y., Liu, J., Chen, F., Shamsi, B.H., Wang, Q., Jiao, F., Qiao, Y., Shi, Y.: Impact of meteorological factors on lower respiratory tract infections in children. J. Int. Med. Res. 44(1), 30–41 (2016)

    Article  Google Scholar 

  15. 15.

    Lu, C.J., Lee, T.S., Chiu, C.C.: Financial time series forecasting using independent component analysis and support vector regression. Decision Support Syst. 47(2), 115–125 (2009)

    Article  Google Scholar 

  16. 16.

    Mirsaeidi, M., Motahari, H., Taghizadeh Khamesi, M., Sharifi, A., Campos, M., Schraufnagel, D.E.: Climate change and respiratory infections. Ann. Am. Thorac. Soc. 13(8), 1223–1230 (2016)

    Article  Google Scholar 

  17. 17.

    Moineddin, R., Nie, J.X., Domb, G., Leong, A.M., Upshur, R.E.: Seasonality of primary care utilization for respiratory diseases in Ontario: a time-series analysis. BMC Health Serv. Res. 8(1), 160 (2008)

  18. 18.

    Moniz, N., Branco, P., Torgo, L.: Resampling strategies for imbalanced time series forecasting. Int. J. Data Sci. Anal. 3(3), 161–181 (2017)

    Article  Google Scholar 

  19. 19.

    Oviedo, S., Contreras, I., Quirós, C., Giménez, M., Conget, I., Vehi, J.: Risk-based postprandial hypoglycemia forecasting using supervised learning. Int. J. Med. Inform. 126, 1–8 (2019)

    Article  Google Scholar 

  20. 20.

    Rana, M.M., Sulaiman, N., Sivertsen, B., Khan, M.F., Nasreen, S.: Trends in atmospheric particulate matter in Dhaka, Bangladesh, and the vicinity. Environ. Sci. Pollut. Res. 23(17), 17393–17403 (2016)

    Article  Google Scholar 

  21. 21.

    Seong, S.J., Park, S.J., Park, T.H., Shin, C.U., Park, D.S., Kim, J.M., Cha, J.W.: Epidemic respiratory disease prediction using ensemble method. In: International Conference on Future Information & Communication Engineering vol 10, pp 253–256 (2018)

  22. 22.

    Shi, T., McAllister, D.A., O’Brien, K.L., Simoes, E.A., Madhi, S.A., Gessner, B.D., Polack, F.P., Balsells, E., Acacio, S., Aguayo, C., et al.: Global, regional, and national disease burden estimates of acute lower respiratory infections due to respiratory syncytial virus in young children in 2015: a systematic review and modelling study. The Lancet 390(10098), 946–958 (2017)

    Article  Google Scholar 

  23. 23.

    Spathis, D., Vlamos, P.: Diagnosing asthma and chronic obstructive pulmonary disease with machine learning. Health Inform. J. 25(3), 811–827 (2019)

    Article  Google Scholar 

  24. 24.

    Voyant, C., Notton, G., Kalogirou, S., Nivet, M.L., Paoli, C., Motte, F., Fouilloy, A.: Machine learning methods for solar radiation forecasting: A review. Renew. Energy 105, 569–582 (2017)

    Article  Google Scholar 

  25. 25.

    Wang, J., Duggasani, A.: Forecasting hotel reservations with long short-term memory-based recurrent neural networks. Int. J. Data Sci. Anal. 9, 77–94 (2020)

    Article  Google Scholar 

  26. 26.

    WHO: Country profiles of environmental burden of disease, World Health Organization (2009). www.who.int/quantifyingehimpacts/national/countryprofile

  27. 27.

    WHO: Ambient (outdoor) air quality and health. World Health Organization (2018). https://www.who.int/en/news-room/fact-sheets/detail/

  28. 28.

    Xu, Z., Etzel, R.A., Su, H., Huang, C., Guo, Y., Tong, S.: Impact of ambient temperature on children’s health: a systematic review. Environ. Res. 117(12), 120–131 (2012)

    Article  Google Scholar 

  29. 29.

    Xu, Z., Hu, W., Tong, S.: Temperature variability and childhood pneumonia: an ecological study. Environ. Health 13(51), 1–8 (2014)

    Google Scholar 

  30. 30.

    Zhang, H., Triche, E., Leaderer, B.: Model for the analysis of binary time series of respiratory symptoms. Am. J. Epidemiol. 151(12), 1206–1215 (2000)

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Atikur R. Khan.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Khan, A.R., Hasan, K.T., Islam, T. et al. Forecasting respiratory tract infection episodes from prescription data for healthcare service planning. Int J Data Sci Anal 11, 169–180 (2021). https://doi.org/10.1007/s41060-020-00235-z

Download citation

Keywords

  • Deep neural network
  • Prescription data
  • Regression tree
  • Respiratory tract infection
  • Support vector regression