Advertisement

Big data and precision medicine: challenges and strategies with healthcare data

  • Johann M. Kraus
  • Ludwig Lausser
  • Peter Kuhn
  • Franz Jobst
  • Michaela Bock
  • Carolin Halanke
  • Michael Hummel
  • Peter Heuschmann
  • Hans A. KestlerEmail author
Regular Paper
  • 926 Downloads

Abstract

Recent snapshots of the European progress on big data in health care and precision medicine reveal diverse perceptions of experts and the public, leading to the impression that algorithmic issues have the largest share among the challenges all health systems are faced with. Yet, from a comparison of different countries it is evident that the adaption and integration of heterogeneous data sources have a major impact on the advancement of precision medicine. Legal regulations for implementation and operation of healthcare networking are actively discussed in the public and gradually implemented in several countries. Based on a unified documentation, they are a perfect precondition for integrating distributed healthcare data to a big data platform with a reliable fact representation. Now, basic and clinical scientists have to be motivated to share their work with these data platforms. In this work, we aim to provide an overview on the common issues in big healthcare data applications and address the challenges for the involved scientific, clinical and administrative partners. We propose a possible strategy for a comprehensive data integration by iterating data harmonization, semantic enrichment and data analysis processes.

Keywords

Big data Precision medicine Health care Data science 

Notes

Acknowledgements

This study was supported by grants from the German Science Foundation (SFB 1074, Project Z1), the Federal Ministry of Education and Research (BMBF, Gerontosys II, Forschungskern SyStaR, Project ID 0315894A and e:Med, SYMBOL-HF, ID 01ZX1407A), and the European Community’s Seventh Framework Programme (FP7/2007–2013 under Grant Agreement No. 602783) all to HAK, and also supported by the BMBF within the Medical informatics initiative (concept phase support).

Compliance with ethical standards

Competing interests

On behalf of all authors, the corresponding author states that there is no conflict of interest.

References

  1. 1.
    Adam, N.R., Wieder, R., Ghosh, D.: Data science, learning, and applications to biomedical and health sciences. Ann. N. Y. Acad. Sci. 1387(1), 5–11 (2017)CrossRefGoogle Scholar
  2. 2.
    Alon, U., Barkai, N., Notterman, D.A., Gish, K., Ybarra, S., Mack, D., Levine, A.J.: Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl. Acad. Sci. USA 96(12), 6745–6750 (1999)CrossRefGoogle Scholar
  3. 3.
    Altman, D.G., McShane, L.M., Sauerbrei, W., Taube, S.E.: Reporting recommendations for tumor marker prognostic studies (REMARK): explanation and elaboration. PLoS Med. 9(5), e1001216 (2012)CrossRefGoogle Scholar
  4. 4.
    Altman, R.B., Prabhu, S., Sidow, A., Zook, J.M., Goldfeder, R., Litwack, D., Ashley, E., Asimenos, G., Bustamante, C.D., Donigan, K., Giacomini, K.M., Johansen, E., Khuri, N., Lee, E., Liang, X.S., Salit, M., Serang, O., Tezak, Z., Wall, D.P., Mansfield, E., Kass-Hout, T.: A research roadmap for next-generation sequencing informatics. Sci. Transl. Med. 8(335), 335ps10 (2016)CrossRefGoogle Scholar
  5. 5.
    Amatayakul, M.K.: Electronic Health Records: A Practical Guide for Professionals and Organizations, 5th edn. AHIMA Press, Chicago (2013)Google Scholar
  6. 6.
    Ashburner, M., Ball, C.A., Blake, J.A., Botstein, D., Butler, H., Cherry, J.M., Davis, A.P., Dolinski, K., Dwight, S.S., Eppig, J.T., Harris, M.A., Hill, D.P., Issel-Tarver, L., Kasarskis, A., Lewis, S., Matese, J.C., Richardson, J.E., Ringwald, M., Rubin, G.M., Sherlock, G.: Gene ontology: tool for the unification of biology. Nat. Genet. 25(1), 25–59 (2000)CrossRefGoogle Scholar
  7. 7.
    Auffray, C., Ballingand, R., Barrosoand, I., Bencze, L., Benson, M., Bergeron, J., Bernal-Delgado, E., Blomberg, N., Bock, C., Conesa, A., Del Signore, S., Delogne, C., Devilee, P., Di Meglio, A., Eijkemans, M., Flicek, P., Graf, N., Grimm, V., Guchelaar, H.J., Guo, Y.K., Gut, I.G., Hanbury, A., Hanif, S., Hilgers, R.D., Honrado, A., Hose, D.R., Houwing-Duistermaat, J., Hubbard, T., Janacek, S.H., Karanikas, H., Kievits, T., Kohler, M., Kremer, A., Lanfear, J., Lengauer, T., Maes, E., Meert, T., Müller, W., Nickel, D., Oledzki, P., Pedersen, B., Petkovic, M., Pliakos, K., Rattray, M., Redón, i Màs, J., Schneider, R., Sengstag, T., Serra-Picamal, X., Spek, W., Vaas, L.A.I., van Batenburg, O., Vandelaer, M., Varnai, P., Villoslada, P., Vizcaíno, J.A., Wubbe, J.P.M., Zanetti, G.: Making sense of big data in health research: towards an EU action plan. Genome Med. 8(1), 71 (2016). with erratumCrossRefGoogle Scholar
  8. 8.
    Barth, T.F.E., Kraus, J.M., Lausser, L., Flossbach, L., Schulte, L., Holzmann, K., Kestler, H.A., Möller, P.: Comparative gene-expression profiling of the large cell variant of gastrointestinal marginal-zone B-cell lymphoma. Sci. Rep. 7, 5963 (2017)CrossRefGoogle Scholar
  9. 9.
    Bernemann, I., Kersting, M., Prokein, J., Hummel, M., Klopp, N., Illig, T.: Zentralisierte Biobanken als Grundlage für die medizinische Forschung. Bundesgesundheitsblatt - Gesundheitsforschung - Gesundheitsschutz 59(3), 336–343 (2016)CrossRefGoogle Scholar
  10. 10.
    Bhattacharya, S., Ha-Thuc, V., Srinivasan, P.: MeSH: a window into full text for document summarization. Bioinformatics 27(13), i20–i28 (2011)CrossRefGoogle Scholar
  11. 11.
    Black, M.B., Parks, B.B., Pluta, L., Chu, T.M., Allen, B.C., Wolfinger, R.D., Thomas, R.S.: Comparison of microarrays and RNA-seq for gene expression analyses of dose-response experiments. Toxicol. Sci. 137(2), 385–403 (2014)CrossRefGoogle Scholar
  12. 12.
    Bundesministerium für Gesundheit: Aktualisierter einheitlicher onkologischer Basisdatensatz der Arbeitsgemeinschaft Deutscher Tumorzentren e.V. (ADT) und der Gesellschaft der epidemiologischen Krebsregister in Deutschland e.V. (GEKID). Tech. Rep. BAnz AT 28.04.2014 B2, Bundesanzeiger Verlag, Köln (2014)Google Scholar
  13. 13.
    Bundestag: Gesetz zur Modernisierung der gesetzlichen Krankenversicherung (GKV-Modernisierungsgesetz - GMG). Tech. Rep. Bundesgesetzblatt Jahrgang 2003 Teil I Nr. 55, Bundesanzeiger Verlag, Köln (2003)Google Scholar
  14. 14.
    Cao, L.: Data science: challenges and directions. Commun. ACM 60(8), 59–68 (2017)CrossRefGoogle Scholar
  15. 15.
    Celi, L.A., Zimolzak, A.J., Stone, D.J.: Dynamic clinical data mining: search engine-based decision support. JMIR Med. Inform. 2(1), e13 (2014)CrossRefGoogle Scholar
  16. 16.
    Central Intelligence Agency: The CIA World Factbook 2017. Skyhorse Publishing, New York (2016)Google Scholar
  17. 17.
    Chen, R., Snyder, M.: Promise of personalized omics to precision medicine. Wiley Interdiscip. Rev. Syst. Biol. Med. 5(1), 73–82 (2013)CrossRefGoogle Scholar
  18. 18.
    Chevillotte, M., von Einem, J., Meier, B.M., Lin, F.M., Kestler, H.A., Mertens, T.: A new tool linking human cytomegalovirus drug resistance mutations to resistance phenotypes. Antivir. Res. 85(2), 318–327 (2010)CrossRefGoogle Scholar
  19. 19.
    Dietrich, G., Fell, F., Fette, G., Krebs, J., Ertl, M., Kaspar, M., Störk, S., Puppe, F.: Web-PaDaWaN: Eine web-basierte Benutzeroberfläche für ein klinisches Data Warehouse. In: HEC 2016: Health Exploring Complexity. Joint Conference of GMDS, DGEpi, IEA-EEF, EFMI, p. 421. GMS Publishing House, Düsseldorf (2016)Google Scholar
  20. 20.
    Dinakar, C., O’Connor, G.T.: The health effects of electronic cigarettes. N. Engl. J. Med. 375(14), 1372–1381 (2016)CrossRefGoogle Scholar
  21. 21.
    Dong, Y., Peng, C.Y.: Principled missing data methods for researchers. SpringerPlus 2(1), 222 (2013)CrossRefGoogle Scholar
  22. 22.
    Emmert-Streib, F., Dehmer, M., Yli-Harja, O.: Against dataism and for data sharing of big biomedical and clinical data with research parasites. Front. Genet. 7, 154 (2016)Google Scholar
  23. 23.
    Europäisches Parlament: Verordnung (EU) 2016/679 des Europäischen Parlaments und des Rates vom 27. April 2016 zum Schutz natürlicher Personen bei der Verarbeitung personenbezogener Daten, zum freien Datenverkehr und zur Aufhebung der Richtlinie 95/46/EG (Datenschutz-Grundverordnung). Tech. Rep. Amtsblatt der Europäischen Union L119/1, Amtsblatt der Europäischen Union, Brussels (2016)Google Scholar
  24. 24.
    Galperin, M.Y., Fernández-Suárez, X.M., Rigden, D.J.: The 24th annual nucleic acids research database issue: a look back and upcoming changes. Nucleic Acids Res. 45(D1), D1–D11 (2017)CrossRefGoogle Scholar
  25. 25.
    Geibel, P., Trautwein, M., Erdur, H., Zimmermann, L., Jegzentis, K., Bengner, M., Nolte, C., Tolxdorff, T.: Ontology-based information extraction: identifying eligible patients for clinical trials in neurology. J. Data Semant. 4(2), 133–147 (2015)CrossRefGoogle Scholar
  26. 26.
    Gerstung, M., Papaemmanuil, E., Martincorena, I., Bullinger, L., Gaidzik, V.I., Paschka, P., Heuser, M., Thol, F., Bolli, N., Ganly, P., Ganser, A., McDermott, U., Döhner, K., Schlenk, R.F., Döhner, H., Campbell, P.J.: Precision oncology for acute myeloid leukemia using a knowledge bank approach. Nat. Genet. 49(3), 332–340 (2017)CrossRefGoogle Scholar
  27. 27.
    Gilbert, R., Goldstein, H., Hemingway, H.: The market in healthcare data. BMJ 351, h5897 (2015)CrossRefGoogle Scholar
  28. 28.
    Gomez-Cabrero, D., Abugessaisa, I., Maier, D., Teschendorff, A., Merkenschlager, M., Gisel, A., Ballestar, E., Bongcam-Rudloff, E., Conesa, A., Tegnér, J.: Data integration in the era of omics: current and future challenges. BMC Syst. Biol. 8(Suppl 2), I1 (2014)CrossRefGoogle Scholar
  29. 29.
    Gress, T.M., Kestler, H.A., Lausser, L., Fiedler, L., Sipos, B., Michalski, C.W., Werner, J., Giese, N., Scarpa, A., Buchholz, M.: Differentiation of multiple types of pancreatico-biliary tumors by molecular analysis of clinical specimens. J. Mol. Med. 90(4), 457–464 (2012)CrossRefGoogle Scholar
  30. 30.
    Hallinan, D., Friedewald, M.: Open consent, biobanking and data protection law: can open consent be ‘informed’ under the forthcoming data protection regulation? Life Sci. Soc. Policy 11, 1 (2015)CrossRefGoogle Scholar
  31. 31.
    Harris, P.A., Taylor, R., Thielke, R., Payne, J., Gonzalez, N., Conde, J.G.: Research electronic data capture (REDCap)—a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inform. 42(2), 377–381 (2009)CrossRefGoogle Scholar
  32. 32.
    Hripcsak, G., Duke, J.D., Shah, N.H., Reich, C.G., Huser, V., Schuemie, M.J., Suchard, M.A., Park, R.W., Wong, I.C.K., Rijnbeek, P.R., van der Lei, J., Pratt, N., Norén, G.N., Li, Y.C., Stang, P.E., Madigan, D., Ryan, P.B.: Observational health data sciences and informatics (OHDSI): opportunities for observational researchers. Stud. Health Technol. Inform. 216, 574–578 (2015)Google Scholar
  33. 33.
    Hripcsak, G., Ryan, P.B., Duke, J.D., Shah, N.H., Park, R.W., Huser, V., Suchard, M.A., Schuemie, M.J., DeFalco, F.J., Perotte, A., Banda, J.M., Reich, C.G., Schilling, L.M., Matheny, M.E., Meeker, D., Pratt, N., Madigan, D.: Characterizing treatment pathways at scale using the OHDSI network. Proc. Natl. Acad. Sci. USA 113(27), 7329–7336 (2016)CrossRefGoogle Scholar
  34. 34.
    Hühne, R., Thalheim, T., Sühnel, J.: AgeFactDB—the JenAge Ageing Factor Database—towards data integration in ageing research. Nucleic Acids Res. 42(D1), D892–D896 (2014)CrossRefGoogle Scholar
  35. 35.
    Hummel, M., Bentink, S., Berger, H., Klapper, W., Wessendorf, S., Barth, T.F.E., Bernd, H.W., Cogliatti, S.B., Dierlamm, J., Feller, A.C., Hansmann, M.L., Haralambieva, E., Harder, L., Hasenclever, D., Kühn, M., Lenze, D., Lichter, P., Martin-Subero, J.I., Möller, P., Müller-Hermelink, H.K., Ott, G., Parwaresch, R.M., Pott, C., Rosenwald, A., Rosolowski, M., Schwaenen, C., Sturzenhofecker, B., Szczepanowski, M., Trautmann, H., Wacker, H.H., Spang, R., Loeffler, M., Trümper, L., Stein, H., Siebert, R.: A biologic definition of Burkitt’s lymphoma from transcriptional and genomic profiling. N. Engl. J. Med. 354(23), 2419–2430 (2006)CrossRefGoogle Scholar
  36. 36.
    Jameson, J.L., Longo, D.L.: Precision medicine personalized, problematic, and promising. N. Engl. J. Med. 372(23), 2229–2234 (2015)CrossRefGoogle Scholar
  37. 37.
    Jobst, F.: IT zur Prozessgestaltung im Krankenhaus - wie bekommt man die optimale Kombination von IT-Anwendungen? In: Schlegel, H. (ed.) Steuerung der IT im Klinikmanagement. Vieweg + Teubner Verlag, Wiesbaden (2010)Google Scholar
  38. 38.
    Jurmeister, P., Lenze, D., Berg, E., Mende, S., Schäper, F., Kellner, U., Herbst, H., Sers, C., Budczies, J., Dietel, M., Hummel, M., von Laffert, M.: Parallel screening for ALK, MET and ROS1 alterations in non-small cell lung cancer with implications for daily routine testing. Lung Cancer 87(2), 122–129 (2015)CrossRefGoogle Scholar
  39. 39.
    Kanehisa, M., Goto, S.: KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28(1), 27–30 (2000)CrossRefGoogle Scholar
  40. 40.
    Khan, J., Wei, J.S., Ringnér, M., Saal, L.H., Ladanyi, M., Westermann, F., Berthold, F., Schwab, M., Antonescu, C.R., Peterson, C., Meltzer, P.S.: Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med. 7(6), 673–679 (2001)CrossRefGoogle Scholar
  41. 41.
    Kim, I.W., Oh, J.M.: Deep learning: from chemoinformatics to precision medicine. J. Pharm. Investig. 47(4), 317–323 (2017)CrossRefGoogle Scholar
  42. 42.
    Kraus, J.M., Kestler, H.A.: A highly efficient multi-core algorithm for clustering extremely large datasets. BMC Bioinform. 11(1), 169 (2010)CrossRefGoogle Scholar
  43. 43.
    Lambin, P., Zindler, J., Vanneste, B.G., van de Voorde, L., Eekers, D., Compter, I., Panth, K.M., Peerlings, J., Larue, R.T.H.M., Deist, T.M., Jochems, A., Lustberg, T., van Soest, J., de Jong, E.E., Even, A.J., Reymen, B., Rekers, N., van Gisbergen, M., Roelofs, E., Carvalho, S., Leijenaar, R.T.H., Zegers, C.M., Jacobs, M., van Timmeren, J., Brouwers, P., Lal, J.A., Dubois, L., Yaromina, A., van Limbergen, E.J., Berbee, M., van Elmpt, W., Oberije, C., Ramaekers, B., Dekker, A., Boersma, L.J., Hoebers, F., Smits, K.M., Berlanga, A.J., Walsh, S.: Decision support systems for personalized and participative radiation oncology. Adv. Drug Deliv. Rev. 109, 131–153 (2017)CrossRefGoogle Scholar
  44. 44.
    Lausser, L., Schmid, F., Kestler, H.A.: Multi-classifier systems incorporating meta information for the analysis of gene expression profiles. Arch. Data Sci. Ser. A 1(1), 157–176 (2016)Google Scholar
  45. 45.
    Lausser, L., Schmid, F., Schirra, L.R., Wilhelm, A.F.X., Kestler, H.A.: Rank-based classifiers for extremely high-dimensional gene expression data. Adv. Data Anal. Classif. (2016).  https://doi.org/10.1007/s11634-016-0277-3 CrossRefGoogle Scholar
  46. 46.
    Lausser, L., Schmid, F., Schmid, M., Kestler, H.A.: Unlabeling data can improve classification accuracy. Pattern Recognit. Lett. 37, 15–23 (2014)CrossRefGoogle Scholar
  47. 47.
    Lausser, L., Szekely, R., Schirra, L.R., Kestler, H.A.: The influence of multi-class feature selection on the prediction of diagnostic phenotypes. Neural Process. Lett. (2017).  https://doi.org/10.1007/s11063-017-9706-3 CrossRefGoogle Scholar
  48. 48.
    Lazar, C., Meganck, S., Taminau, J., Steenhoff, D., Coletta, A., Molter, C., Weiss-Solís, D.Y., Duque, R., Bersini, H., Nowé, A.: Batch effect removal methods for microarray gene expression data integration: a survey. Brief. Bioinform. 14(4), 469–490 (2013)CrossRefGoogle Scholar
  49. 49.
    Leek, J.T., Scharpf, R.B., Corrada Bravo, H., Simcha, D., Langmead, B., Johnson, W.E., Geman, D., Baggerly, K., Irizarry, R.A.: Tackling the widespread and critical impact of batch effects in high-throughput data. Nat. Rev. Genet. 11(10), 733–739 (2010)CrossRefGoogle Scholar
  50. 50.
    Luo, J., Wu, M., Gopukumar, D., Zhao, Y.: Big data application in biomedical research and health care: a literature review. Biomed. Inform. Insights 8, 1–10 (2016)Google Scholar
  51. 51.
    Marnau, N.: Anonymisierung, Pseudonymisierung und Transparenz für Big Data. Datenschutz und Datensicherheit - DuD 40(7), 428–433 (2016)CrossRefGoogle Scholar
  52. 52.
    Mirnezami, R., Nicholson, J., Darzi, A.: Preparing for precision medicine. N. Engl. J. Med. 366(6), 489–491 (2012)CrossRefGoogle Scholar
  53. 53.
    Murphy, S.N., Avillach, P., Bellazzi, R., Phillips, L., Gabetta, M., Eran, A., McDuffie, M.T., Kohane, I.S.: Combining clinical and genomics queries using i2b2—three methods. PLoS ONE 12(4), e0172187 (2017)CrossRefGoogle Scholar
  54. 54.
    Murphy, S.N., Weber, G., Mendis, M., Gainer, V., Chueh, H.C., Churchill, S., Kohane, I.: Serving the enterprise and beyond with informatics for integrating biology and the bedside (i2b2). J. Am. Med. Inform. Assoc. 17, 124–130 (2010)CrossRefGoogle Scholar
  55. 55.
    NCBI Resource Coordinators: Database resources of the national center for biotechnology information. Nucleic Acids Res. 44(D1), D7–D19 (2016)Google Scholar
  56. 56.
    NHS England: NHS England sets out the next steps of public awareness about care.data. https://www.england.nhs.uk/ourwork/tsd/care-data. Accessed 2017-08-16
  57. 57.
    Obermeyer, Z., Emanuel, E.J.: Predicting the future—big data, machine learning, and clinical medicine. N. Engl. J. Med. 375(13), 1216–1219 (2016)CrossRefGoogle Scholar
  58. 58.
    OECD: OECD Reviews of Health Care Quality: United Kingdom 2016. OECD Publishing, Paris (2016)Google Scholar
  59. 59.
    Olsen, L., Aisner, D., McGinnis, J.M. (eds.): The Learning Healthcare System: Workshop Summary. The National Academies Press, Washington (2007)Google Scholar
  60. 60.
    Ow, G.S., Kuznetsov, V.A.: Big genomics and clinical data analytics strategies for precision cancer prognosis. Sci. Rep. 6, 36493 (2016)CrossRefGoogle Scholar
  61. 61.
    Parmar, C., Grossmann, P., Bussink, J., Lambin, P., Aerts, H.J.W.L.: Machine learning methods for quantitative radiomic biomarkers. Sci. Rep. 5, 13087 (2015)CrossRefGoogle Scholar
  62. 62.
    Piro, R., Nenov, Y., Motik, B., Horrocks, I., Hendler, P., Kimberly, S., Rossman, M.: Semantic technologies for data analysis in health care. In: Groth, P., Simperl, E., Gray, A., Sabou, M., Krötzsch, M., Lecue, F., Flöck, F., Gil, Y. (eds.) The Semantic Web—ISWC 2016, vol. LNCS 9982, pp. 400–417. Springer, Cham (2016)CrossRefGoogle Scholar
  63. 63.
    Pommerening, K., Drepper, J., Helbing, K., Ganslandt, T.: Leitfaden zum Datenschutz in medizinischen Forschungsprojekten: Generische Lösungen der TMF 2.0. Schriftenreihe der TMF. MWV Medizinisch Wiss. Ver (2014)Google Scholar
  64. 64.
    Rapsomaniki, E., Thuresson, M., Yang, E., Blin, P., Hunt, P., Chung, S.C., Stogiannis, D., Pujades-Rodriguez, M., Timmis, A., Denaxas, S.C., Danchin, N., Stokes, M., Thomas-Delecourt, F., Emmas, C., Hasvold, P., Jennings, E., Johansson, S., Cohen, D.J., Jernberg, T., Moore, N., Janzon, M., Hemingway, H.: Using big data from health records from four countries to evaluate chronic disease outcomes: a study in 114 364 survivors of myocardial infarction. Eur. Heart J. Qual. Care Clin. Outcomes 2(3), 172–183 (2016)CrossRefGoogle Scholar
  65. 65.
    Russo, E., Sittig, D.F., Murphy, D.R., Singh, H.: Challenges in patient safety improvement research in the era of electronic health records. Healthcare 4(4), 285–290 (2016)CrossRefGoogle Scholar
  66. 66.
    Schmid, F., Schmid, M., Müssel, C., Sträng, J.E., Buske, C., Bullinger, L., Kraus, J.M., Kestler, H.A.: GiANT: gene set uncertainty in enrichment analysis. Bioinformatics 32(12), 1891–1894 (2016)CrossRefGoogle Scholar
  67. 67.
    Schork, N.: Personalized medicine: time for one-person trials. Nature 520(7549), 609–611 (2015)CrossRefGoogle Scholar
  68. 68.
    Schulze-Kremer, S.: Ontologies for molecular biology and bioinformatics. In Silico Biol. 2(3), 179–193 (2002)Google Scholar
  69. 69.
    Schuurman, N., Leszczynski, A.: Ontologies for bioinformatics. Bioinform. Biol. Insights 2, 187–200 (2008)CrossRefGoogle Scholar
  70. 70.
    Schwarzfischer, Reinders J., Dettmer, K., Kleo, K., Dimitrova, L., Hummel, M., Feist, M., Kube, D., Szczepanowski, M., Klapper, W., Taruttis, F., Engelmann, J.C., Spang, R., Gronwald, W., Oefner, P.J.: Comprehensive metaboproteomics of Burkitt’s and diffuse large B-cell lymphoma cell lines and primary tumor tissues reveals distinct differences in pyruvate content and metabolism. J. Proteome Res. 16(3), 1105–1120 (2017)CrossRefGoogle Scholar
  71. 71.
    Schwenker, F., Kestler, H.A., Palm, G.: Three learning phases for radial-basis-function networks. Neural Netw. 14(4–5), 439–458 (2001)CrossRefGoogle Scholar
  72. 72.
    Skiena, S.S.: The Data Science Design Manual. Springer, Cham (2017)CrossRefGoogle Scholar
  73. 73.
    Sonsilphong, S., Arch-int, N., Arch-int, S., Pattarapongsin, C.: A semantic interoperability approach to health-care data: resolving data-level conflicts. Expert Syst. 33(6), 531–547 (2016)CrossRefGoogle Scholar
  74. 74.
    Sreeramareddy, C.T., Sathyanarayana, T.N.: Decentralised versus centralised governance of health services. Cochrane Database Syst. Rev. 11, CD010830 (2013)Google Scholar
  75. 75.
    Stege, A., Hummel, M.: Erfahrungen bei Einrichtung und Betrieb einer Biobank. Der Pathologe 29(2), 214–217 (2008)CrossRefGoogle Scholar
  76. 76.
    Subramanian, A., Tamayo, P., Mootha, V.K., Mukherjee, S., Ebert, B.L., Gillette, M.A., Paulovich, A., Pomeroy, S.L., Golub, T.R., Lander, E.S., Mesirov, J.P.: Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102(43), 15545–15550 (2005)CrossRefGoogle Scholar
  77. 77.
    Taudien, S., Lausser, L., Giamarellos-Bourboulis, E.J., Sponholz, C., Schöneweck, F., Felder, M., Schirra, L.R., Schmid, F., Gogos, C., Groth, S., Petersen, B.S., Franke, A., Lieb, W., Huse, K., Zipfel, P.F., Kurzai, O., Moepps, B., Gierschik, P., Bauer, M., Scherag, A., Kestler, H.A., Platzer, M.: Genetic factors of the disease course after sepsis: rare deleterious variants are predictive. EBioMedicine 12, 227–238 (2016)CrossRefGoogle Scholar
  78. 78.
    Timm, J., Renly, S., Farkash, A.: Large scale healthcare data integration and analysis using the semantic web. Stud. Health Technol. Inform. 169, 729–733 (2011)Google Scholar
  79. 79.
    Watabe-Rudolph, M., Song, Z., Lausser, L., Schnack, C., Begus-Nahrmann, Y., Scheithauer, M.O., Rettinger, G., Otto, M., Tumani, H., Thal, D.R., Attems, J., Jellinger, K.A., Kestler, H.A., von Arnim, C.A.F., Rudolph, K.L.: Chitinase enzyme activity in CSF is a powerful biomarker of Alzheimer disease. Neurology 78(8), 569–577 (2012)CrossRefGoogle Scholar
  80. 80.
    Webb, A.R.: Statistical Pattern Recognition, 2nd edn. Wiley, New Jersey (2003)zbMATHGoogle Scholar
  81. 81.
    Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)CrossRefGoogle Scholar
  82. 82.
    Wu, Z., Xu, Y., Yang, Y., Zhang, C., Zhu, X., Ji, Y.: Towards a semantic web of things: a hybrid semantic annotation, extraction, and reasoning framework for cyber–physical system. Sensors 17(2), 408 (2017)CrossRefGoogle Scholar
  83. 83.
    Zhou, S., Greenspan, H., Shen, D.: Deep Learning for Medical Image Analysis. Elsevier, Amsterdam (2017)Google Scholar
  84. 84.
    Zhu, F., Patumcharoenpol, P., Zhang, C., Yang, Y., Chan, J., Meechai, A., Vongsangnak, W., Shen, B.: Biomedical text mining and its applications in cancer research. J. Biomed. Inform. 46(2), 200–211 (2013)CrossRefGoogle Scholar

Copyright information

© Springer International Publishing AG, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Medical Systems BiologyUlm UniversityUlmGermany
  2. 2.Comprehensive Cancer Center UlmUniversity Hospital UlmUlmGermany
  3. 3.University Hospital UlmUlmGermany
  4. 4.Institute for PathologyCharitéBerlinGermany
  5. 5.Institute for Clinical Epidemiology and BiometryUniversity of WürzburgWürzburgGermany
  6. 6.Clinical Trial Center WürzburgUniversity Hospital WürzburgWürzburgGermany

Personalised recommendations