Skip to main content
Log in

Multiscale Molecular Modeling Applied to the Upstream Oil & Gas Industry Challenges

  • Original Article
  • Published:
Polytechnica Aims and scope Submit manuscript

Abstract

This review brings an overview based on recent publications of multi-scale molecular modeling studies applied to the upstream Oil & Gas segment. These works provide suitable insights on technologies of Oil & Gas interest ranging from fluid properties under spatial confinement, and the phenomena occurring at brine-oil-rock interfaces through enhanced oil recovery processes. Within a broader phenomenological perspective, the subsurface phenomena may occur over distinct time and length scales. A suitable representation of the multiscale phenomena through molecular modeling may contribute to design optimized petrophysical processes from nano to macroscopic scales. This review covers several examples spanning from first principles calculations, molecular dynamics, mesoscopic modeling up to finite elements. At the electronic level, recent methodological advances and their corresponding implementations were essential to describe the energetics of fluid/rock interacting details accurately. Further, molecular dynamics simulations based on fully atomistic force fields taken from higher methodology resolutions, such as first principles calculations, were employed to characterize confinement interfaces, revealing the fluid structuring and interfacial properties, including the role of surfactant nanoparticles under reservoir conditions. These outputs served as modeling descriptors at mesoscale to simulate the oil displacement by fluid injection on pore network models. Finally, we discuss some perspectives and challenges, where multiscale approaches can provide suitable solutions by addressing other systems and properties of Oil & Gas industry interest. In light of multiscale molecular modeling, we propose its integration with reservoir simulators combined with machine learning techniques, and the design of nanostructured materials for further applications on the natural gas separation.

Schematic figure of multiscale modelling for upstream oil & gas segment applications. Bridging time andspatial scales over the systems, properties, phenomena and methodologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adams JJ (2014) Asphaltene adsorption, a literature review. Energy & Fuels 28(5):2831

    Article  Google Scholar 

  • Alvarado V, Manrique E (2010) Enhanced oil recovery: an update review. Energies 3(9):1529

    Article  Google Scholar 

  • Alvim RdS, Miranda CR (2016) Noncontact AFM first-principles simulations of functionalized silicon tips on the montmorillonite (001) surface. J Phys Chem C 120(25):13503

    Article  Google Scholar 

  • Alvim RS, Babilonia OA, Celaschi YM, Miranda CR (2017) Nanoscience applied to oil recovery and mitigation: a multiscale computational approach. MRS Advances 2(9):477

    Article  Google Scholar 

  • Alvim RS, Lima FC, Sánchez VM, Headen TF, Boek ES, Miranda CR (2016) Adsorption of asphaltenes on the calcite (10.4) surface by first-principles calculations. RSC Advances 6(97):95328

    Article  Google Scholar 

  • Alvim RS, Miranda CR (2015) First principles characterization of silicate sites in clay surfaces. Phys Chem Chem Phys 17(7):4952

    Article  Google Scholar 

  • Andrä H, Combaret N, Dvorkin J, Glatt E, Han J, Kabel M, Keehm Y, Krzikalla F, Lee M, Madonna C et al (2013) Digital rock physics benchmarks’ Part I: Imaging and segmentation. Computers & Geosciences 50:25

    Article  Google Scholar 

  • Asahi R (2010) First-principles calculations and applications for materials design. In: Properties and applications of complex intermetallics. World Scientific, pp 279–290

  • Bevilaqua RC, Rigo VA, Veríssimo-Alves M, Miranda CR (2014) NMR characterization of hydrocarbon adsorption on calcite surfaces: A first principles study. J Chem Phys 141(20): 204705

    Article  Google Scholar 

  • Bonn D (2001) Wetting transitions. Current Opinion in Colloid & Interface Science 6(1):22

    Article  Google Scholar 

  • Brandt A (2002) Multiscale scientific computation: Review 2001. In: Multiscale and multiresolution methods. Springer, pp 3–95

  • Chen S, Doolen GD (1998) Lattice Boltzmann method for fluid flows. Annual Rev Fluid Mech 30(1):329

    Article  MathSciNet  MATH  Google Scholar 

  • Coon ET, Porter ML, Kang Q (2014) Taxila LBM: a parallel, modular lattice Boltzmann framework for simulating pore-scale flow in porous media. Comput Geosci 18(1):17

    Article  MathSciNet  MATH  Google Scholar 

  • De Almeida JM, Miranda CR (2016) Improved oil recovery in nanopores: NanoIOR. Scientific Reports 6:28128

    Article  Google Scholar 

  • de Lara LS, Michelon MF, Metin CO, Nguyen QP, Miranda CR (2012) Interface tension of silica hydroxylated nanoparticle with brine: a combined experimental and molecular dynamics study. J Chem Phys 136 (16):164702

    Article  Google Scholar 

  • de Lara LS, Michelon MF, Miranda CR (2012) Molecular dynamics studies of fluid/oil interfaces for improved oil recovery processes. J Phys Chem B 116(50):14667

    Article  Google Scholar 

  • de Lara LS, Rigo VA, Michelon MF, Metin CO, Nguyen QP, Miranda CR (2015) Molecular dynamics studies of aqueous silica nanoparticle dispersions: Salt effects on the double layer formation. J Phys Condens Matter 27(32):325101

    Article  Google Scholar 

  • de Lara LS, Rigo VA, Miranda CR (2015) The stability and interfacial properties of functionalized silica nanoparticles dispersed in brine studied by molecular dynamics. The European Physical Journal B 88(10):261

    Article  Google Scholar 

  • de Lara LS, Rigo VA, Miranda CR (2016) Functionalized silica nanoparticles within multicomponent oil/brine interfaces: a study in molecular dynamics. J Phys Chem C 120(12):6787

    Article  Google Scholar 

  • Faramawy S, Zaki T, Sakr AE (2016) Natural gas origin, composition, and processing: a review. J Nat Gas Sci Eng 34:34

    Article  Google Scholar 

  • Franz Suxo Mamani V, Miranda C (2017) Multiscale fluid dynamics in porous media: applications in enhanced oil recovery. https://doi.org/10.20906/CPS/CILAMCE2017-0357

  • Ghorbani M, Mohammadi AH (2017) Effects of temperature, pressure and fluid composition on hydrocarbon gas-oil interfacial tension (IFT): an experimental study using ADSA image analysis of pendant drop test method. J Mol Liq 227:318

    Article  Google Scholar 

  • Gouth F, Collell J, Galliero G, Wang J, et al (2013) Molecular simulation to determine key shale gas parameters, and their use in a commercial simulator for production forecasting. In: EAGE Annual conference & exhibition incorporating SPE Europec (society of petroleum engineers)

  • Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136(3B):B864

    Article  MathSciNet  Google Scholar 

  • Horstemeyer MF (2009) Multiscale modeling: a review. In: Practical aspects of computational chemistry. Springer, pp 87–135

  • Hospital A, Goñi JR, Orozco M, Gelpí JL (2015) Molecular dynamics simulations: advances and applications. Advances and applications in bioinformatics and chemistry: AABC 8:37

    Google Scholar 

  • Illner R (2007) Lattice boltzmann modeling: an introduction for geoscientists and engineers

  • Kar A, Chiang TY, Ortiz Rivera I, Sen A, Velegol D (2015) Enhanced transport into and out of dead-end pores. ACS nano 9(1):746

    Article  Google Scholar 

  • Katsube T, Williamson M (1994) Effects of diagenesis on shale nano-pore structure and implications for sealing capacity. Clay minerals 29(4):451

    Article  Google Scholar 

  • Kirch A, de Almeida JM, Miranda CR (2018) Multilevel molecular modeling approach for a rational design of ionic current sensors for nanofluidics. J Chem Theory Comput 14(6):3113

    Article  Google Scholar 

  • Kirch A, Mutisya SM, Sanchez VM, de Almeida JM, Miranda CR (2018) Fresh molecular look at calcite–brine nanoconfined interfaces. J Phys Chem C 122(11):6117

    Article  Google Scholar 

  • Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140(4A):A1133

    Article  MathSciNet  Google Scholar 

  • Kunieda M, Nakaoka K, Liang Y, Miranda CR, Ueda A, Takahashi S, Okabe H, Matsuoka T (2010) Self-accumulation of aromatics at the oil- water interface through weak hydrogen bonding. J Am Chem Soc 132(51):18281

    Article  Google Scholar 

  • Lane JMD, Ismail AE, Chandross M, Lorenz CD, Grest GS (2009) Forces between functionalized silica nanoparticles in solution. Phys Rev E 79(5):050501

    Article  Google Scholar 

  • Lima FCDA, Alvim RdS, Miranda CR (2017) From single asphaltenes and resins to nanoaggregates: a computational study. Energy & Fuels 31(11):11743

    Article  Google Scholar 

  • Makimura D, Metin C, Kabashima T, Matsuoka T, Nguyen Q, Miranda CR (2010) Combined modeling and experimental studies of hydroxylated silica nanoparticles. J Mater Sci 45(18): 5084

    Article  Google Scholar 

  • Mayer T (1971) Petroleum. hydrocarbons. Anal Chem 43(5):174

    Article  Google Scholar 

  • Melikoglu M (2014) Shale gas: Analysis of its role in the global energy market. Renew Sust Energ Rev 37:460

    Article  Google Scholar 

  • Metin CO, Bonnecaze RT, Lake LW, Miranda CR, Nguyen QP (2014) Aggregation kinetics and shear rheology of aqueous silica suspensions. Applied Nanoscience 4(2):169

    Article  Google Scholar 

  • Miranda CR, de Lara LS, Tonetto BC, et al (2012) Stability and mobility of functionalized silica nanoparticles for enhanced oil recovery applications. In: SPE International oilfield nanotechnology conference and exhibition (society of petroleum engineers

  • Miranda CR, Matsuoka T (2008) Nanogeoscience: There’s plenty of room at the ground. Geochimica et Cosmochimica Acta Supplement 72:A634

    Google Scholar 

  • Mohamad AA (2011) Lattice Boltzmann method: fundamentals and engineering applications with computer codes. Springer Science & Business Media, Berlin

    Book  MATH  Google Scholar 

  • Mutisya SM, Kirch A, De Almeida JM, Sanchez VM, Miranda CR (2017) Molecular dynamics simulations of water confined in calcite slit pores: an NMR spin relaxation and hydrogen bond analysis. J Phys Chem C 121(12):6674

    Article  Google Scholar 

  • Pereira AO, Lara LS, Miranda CR (2016) Combining molecular dynamics and lattice Boltzmann simulations: a hierarchical computational protocol for microfluidics. Microfluid Nanofluid 20(2):36

    Article  Google Scholar 

  • Peter C, Kremer K (2009) Multiscale simulation of soft matter systems–from the atomistic to the coarse-grained level and back. Soft Matter 5(22):4357

    Article  Google Scholar 

  • Pickard CJ, Mauri F (2001) All-electron magnetic response with pseudopotentials: NMR chemical shifts. Phys Rev B 63(24):245101

    Article  Google Scholar 

  • Popov P, Qin G, Bi L, Efendiev Y, Ewing RE, Li J, et al (2009) Multiphysics and multiscale methods for modeling fluid flow through naturally fractured carbonate karst reservoirs. SPE Reservoir Evaluation & Engineering 12(02):218

    Article  Google Scholar 

  • Porter ML, Coon E, Kang Q, Moulton J, Carey J (2012) Multicomponent interparticle-potential lattice Boltzmann model for fluids with large viscosity ratios. Phys Rev E 86(3):036701

    Article  Google Scholar 

  • Pourpoint F, Gervais C, Bonhomme-Coury L, Azais T, Coelho C, Mauri F, Alonso B, Babonneau F, Bonhomme C (2007) Calcium phosphates and hydroxyapatite: Solid-state NMR experiments and first-principles calculations. Appl Magn Reson 32(4):435

    Article  Google Scholar 

  • Reeder R (1983) Carbonates: mineralogy and chemistry, reviewsin mineralogy. Mineral Soc Am Washington DC 11:394

    Google Scholar 

  • Ricci E, Minelli M, De Angelis MG (2017) A multiscale approach to predict the mixed gas separation performance of glassy polymeric membranes for CO2 capture: The case of CO2/CH4 mixture in Matrimid®;. J Membr Sci 539:88

    Article  Google Scholar 

  • Rigo VA, de Lara LS, Miranda CR (2014) Energetics of formation and hydration of functionalized silica nanoparticles: an atomistic computational study. Appl Surf Sci 292:742

    Article  Google Scholar 

  • Rigo VA, Metin CO, Nguyen QP, Miranda CR (2012) Hydrocarbon adsorption on carbonate mineral surfaces: a first-principles study with van der Waals interactions. J Phys Chem C 116(46):24538

    Article  Google Scholar 

  • Sanchez VM, Miranda CR (2014) Modeling acid oil component interactions with carbonate reservoirs: a first-principles view on low salinity recovery mechanisms. J Phys Chem C 118(33):19180

    Article  Google Scholar 

  • Sand K, Yang M, Makovicky E, Cooke DJ, Hassenkam T, Bechgaard K, Stipp S (2010) Binding of ethanol on calcite: The role of the OH bond and its relevance to biomineralization. Langmuir 26(19):15239

    Article  Google Scholar 

  • Sheng J (2014) Critical review of low-salinity waterflooding. J Pet Sci Eng 120:216

    Article  Google Scholar 

  • Sholl D, Steckel JA (2011) Density functional theory: a practical introduction. Wiley, New York

    Google Scholar 

  • Stone JE, Phillips JC, Freddolino PL, Hardy DJ, Trabuco LG, Schulten K (2007) Accelerating molecular modeling applications with graphics processors. J Comput Chem 28(16):2618

    Article  Google Scholar 

  • Succi S (2001) The lattice Boltzmann equation: for fluid dynamics and beyond. Oxford University Press, Oxford

    MATH  Google Scholar 

  • Tomasi J, Mennucci B, Cammi R (2005) Quantum mechanical continuum solvation models. Chem Rev 105(8):2999

    Article  Google Scholar 

  • Ungerer P, Nieto-Draghi C, Lachet V, Wender A, Di Lella A, Boutin A, Rousseau B, Fuchs AH (2007) Molecular simulation applied to fluid properties in the oil and gas industry. Mol Simul 33(4-5):287

    Article  Google Scholar 

  • Voora VK, Al-Saidi W, Jordan KD (2011) Density functional theory study of pyrophyllite and M-montmorillonites (M= Li, Na, K, Mg, and Ca): Role of dispersion interactions. J Phys Chem A 115(34):9695

    Article  Google Scholar 

  • Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227

    Article  Google Scholar 

  • Weinan E (2011) Principles of multiscale modeling. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Wu J, He J, Torsater O, Zhang Z, et al (2012) Effect of nanoparticles on oil-water flow in a confined nanochannel: a molecular dynamics study. In: SPE International oilfield nanotechnology conference and exhibition (society of petroleum engineers)

  • Yao J, Hu R, Wang C, Yang Y (2015) Multiscale pore structure analysis in carbonate rocks. International Journal for Multiscale Computational Engineering 13(1)

  • Zhang K, Wang F-h, Lu Y-j (2018) Molecular dynamics simulation of continuous nanoflow transport through the uneven wettability channel. AIP Advances 8(1):015111

    Article  Google Scholar 

  • Zhang L, Zhang Z, Wang P (2012) Smart surfaces with switchable superoleophilicity and superoleophobicity in aqueous media: toward controllable oil/water separation. NPG Asia Materials 4(2):e8

    Article  Google Scholar 

  • Zhang P, Tweheyo MT, Austad T (2007) Wettability alteration and improved oil recovery by spontaneous imbibition of seawater into chalk: Impact of the potential determining ions Ca2+, Mg2+, and SO42-. Colloids Surf A Physicochem Eng Asp 301(1-3):199

    Article  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge support of the RCGI – Research Centre for Gas Innovation, hosted by the University of São Paulo (USP) and sponsored by FAPESP – São Paulo Research Foundation (2014/50279-4) and Shell Brasil. CRM also acknowledges the support by Petrobras, Repsol-Sinopec Brasil, CNPq, CAPES and Fapesp (2017/02317-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caetano Rodrigues Miranda.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kirch, A., Razmara, N., Mamani, V.F.S. et al. Multiscale Molecular Modeling Applied to the Upstream Oil & Gas Industry Challenges. Polytechnica 3, 54–65 (2020). https://doi.org/10.1007/s41050-019-00019-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41050-019-00019-w

Keywords

Navigation