Skip to main content
Log in

Enhancing the physical performance of concrete containing construction and demolition waste against the effects of accelerated carbonation and chloride ingression

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

The proper management of construction and demolition waste (CDW) from the construction industry is an issue that has gained relevance over the last years and, in this context, research on the potential of using CDW in concrete construction has stood out. This work analysed the durability of concrete with CDW when exposed to aggressive agents. Prismatic and cylindrical samples were prepared using four mixtures: one reference (R) and three with 15%, 25%, and 50% of CDW, respectively. The experimental campaign included the measurement of the corrosion potential, compressive strength, water absorption by capillarity and immersion, and X-ray diffraction test. The results showed that the mixture with 50% CDW presented 16% higher compressive strength than the reference concrete. The mixtures with 25% and 50% CDW presented better results in the corrosion potential tests by the penetration of chloride ions. The results of the acceleration test of CO2, at the end of 28 days of exposure, showed that only the mixture with 50% CDW presented higher electronegative corrosion potential, -369.74 mV, and 9 mm of carbonation depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Azevedo ARG, Vieira CMF, Ferreira WM, Faria KCP, Pedroti LG, Mendes BC (2020) Potential use of ceramic waste as precursor in the geopolymerization reaction for the production of ceramic roof tiles. J Build Eng 29:3

    Google Scholar 

  2. Azevedo ARG, Cecchin D, Carmo DF, Silva FC, Campos CMO, Shtrucka TG, Marvila MT, Monteiro SN (2020) Analysis of the compactness and properties of the hardened state of mortars with recycling of construction and demolition waste (CDW). J Market Res 9:3

    Google Scholar 

  3. Arulrajah A, Naeini M, Mohammadinia A, Horpibulsuk S, Leong M (2020) Recovered plastic and demolition waste blends as railway capping materials. Transport Geotech 22:1

    Article  Google Scholar 

  4. Oliveira PS, Antunes MLP, Cruz NC, Rangel EC, Azevedo ARG, Durrant SF (2020) Use of waste collected from wind turbine blade production as an eco-friendly ingredient in mortars for civil construction. J Clean Prod 274:35

    Article  Google Scholar 

  5. Cordon HCF, Cagnoni FC, Ferreira FF (2019) Comparison of physical and mechanical properties of civil construction plaster and recycled waste gypsum from São Paulo, Brazil. J Build Eng 22:44

    Google Scholar 

  6. Rodríguez G, Bosque IFS, Asensio E (2020) Construction and demolition waste applications and maximum daily output in Spanish recycling plants. Waste Manag Res 38:4

    Article  Google Scholar 

  7. Costa FN, Ribeiro DV (2021) Evaluation of phase formation and physical-mechanical properties of Portland cements produced with civil construction waste. Cement 5:7

    Article  Google Scholar 

  8. Drochytka R, Dufek Z, Michalčíková M, Hodul J (2020) Study of Possibilities of Using Special Types of Building and Demolition Waste in Civil Engineering. Period Polytech Civil Eng 64:1

    Google Scholar 

  9. Kazmi D, Williams DJ (2019) Waste glass in civil engineering applications – A review. Int J Appl Ceram Technol 17:2

    Google Scholar 

  10. Ivannikov AL, Kongar-Syuryun C, Rybak J, Tyulyaeva Y (2019) The reuse of mining and construction waste for backfill as one of the sustainable activities. Iop Conf Ser: Earth Environ Sci 362:2019

    Google Scholar 

  11. Lu JX, Poon CS (2019)  Recycling of waste glass in construction materials, New Trends in Eco-Efficient and Recycled Concrete, (S.L.)

  12. Hammes G, Souza ED, Rodriguez CMT, Millan RHR, Herazo JCM (2020) Evaluation of the reverse logistics performance in civil construction.  J Clean Prod (S.L.) 248

  13. Cipriano PB, Galdino TSG, Sá HCS, Ferraz AV (2021) Avaliação dos parâmetros de calcinação do resíduo de gesso nas propriedades do gesso reciclado. Revista Matéria 26:3

    Google Scholar 

  14. Teixeira FR, Wally GB, Magalhães FC, Sell Júnior FK, Paliga CM, Torres AS (2021) Avaliação de propriedades relacionadas à penetração de cloretos em concretos produzidos com substituição parcial de cimento por resíduo de beneficiamento de rochas ornamentais. Revista Matéria 26:3

    Google Scholar 

  15. Liu J, Nie J, Yuan H (2020)  Interactive decisions of the waste producer and the recycler in construction waste recycling. J Clean Prod (S.L.) 256

  16. Brandão R, Edwards DJ, Hosseini MR, Melo ACS, Macêdo AN (2021) “Reverse supply chain conceptual model for construction and demolition waste”. Waste Manag Res: J Sustain Circular Econ (S.L.)

  17. Hoang NH, Ishigaki T, Kubota R, Yamada M, Kawamoto K (2021) “A review of construction and demolition waste management in Southeast Asia”. J Mater Cycles Waste Manag (S.L.) 22

  18. Mohajerani A, Burnett L, Smith JV, Markovski S, Rodwell G, Rahman MT, Kurmus H, Mirzababaei M, Arulrajah A, Horpibulsuk S (2020) “Recycling waste rubber tyres in construction materials and associated environmental considerations: a review”, Resources, Conservation and Recycling, (S.L.). 155

  19. Klepa RB, Medeiros MF, Franco MAC, Tamberg ET, Farias TMB, Paschoalin Filho JA, Berssaneti FT, Santana JCC (2019) “Reuse of construction waste to produce thermoluminescent sensor for use in highway traffic control”. J Clean Prod 209

  20. Zoghi M, Kim S (2020) Dynamic Modeling for Life Cycle Cost Analysis of BIM-Based Construction Waste Management. Sustainability 12:6

    Article  Google Scholar 

  21. Oliveira MLS, Izquierdo M, Querol X, Lieberman RN, Saikia BK, Silva LFO (2019) “Nanoparticles from construction wastes: a problem to health and the environment”. J Clean Prod 219

  22. ABNT – Associação Brasileira de Normas Técnicas (2004) NBR 15116: Agregados reciclados de resíduos sólidos da construção civil: Utilização em pavimentação e preparo de concreto sem função estrutural – Requisitos. Rio de Janeiro

  23. Andrade JJO, Possan E, Squiavon JZ, Ortolan TLP (2018) “Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste”. Const Build Mater 161

  24. Ozbakkaloglu T, Gholampour A, Xie T (2018) Mechanical and Durability Properties of Recycled Aggregate Concrete: effect of recycled aggregate properties and content. J Mater Civ Eng 30:2

    Article  Google Scholar 

  25. Ojha B, Kaura PN, Singh P (2023) Studies on mechanical performance of treated and non-treated coarse recycled concrete aggregate and its performance in concrete-an Indian case study. Res Eng Struct Mater 10:341–362. https://doi.org/10.17515/resm2023.53me0728rs

    Article  Google Scholar 

  26. Geng J, Sun J (2013) Characteristics of the carbonation resistance of recycled fine aggregate concrete. Constr Build Mater 49:814–820. https://doi.org/10.1016/j.conbuildmat.2013.08.090

    Article  Google Scholar 

  27. de Oliveira Andrade JJ, Possan E, Squiavon JZ, Ortolan TLP (2018) Evaluation of mechanical properties and carbonation of mortars produced with construction and demolition waste. Constr Build Mater 161:70–83. https://doi.org/10.1016/j.conbuildmat.2017.11.089

    Article  Google Scholar 

  28. Estolano V, Fucale S, Vieira Filho JO, Gabriel D, Alencar Y (2018) Avaliação dos módulos de elasticidade estático e dinâmico de concretos produzidos com agregados reciclados oriundos de resíduos de pré-fabricados de concreto. Rev Mater. 23. https://doi.org/10.1590/s1517-707620170001.0310

  29. Fan C, Huang R, Hwang H, Chao S (2015) “The effects of different fine recycle concrete aggregates on the properties of mortar”. J Mater

  30. Meena RV, Chouhan HS, Jain JK, Satankar RK (2021) Construction and Demolition Waste as an Alternative of Rigid Pavement Material: a review. Iop Conf Ser: Earth Environ Sci 795:1

    Google Scholar 

  31. Nedeljković M, Visser J, Šavija B, Valcke S, Schlangen E (2021) Use of fine recycled concrete aggregates in concrete: A critical review. J Build Eng 38:102196. https://doi.org/10.1016/J.JOBE.2021.102196

    Article  Google Scholar 

  32. Silva JA, Piva JH, Wanderlind A, Savi AE, Antunes EGP (2021) Análise das características físicas e propriedades mecânicas de argamassa com inserção de resíduos de madeira. Revista Matéria 26:3

    Google Scholar 

  33. Amorim Júnior NS, Silva GAO, Ribeiro DV (2018) Effects of the incorporation of recycled aggregate in the durability of the concrete submitted to freeze-thaw cycles. Constr Build Mater 161:10

    Article  Google Scholar 

  34. Araújo DDL, Felix LP, Costa L, Martins T (2016) Influence of recycled aggregates from construction waste on mechanical properties of concrete. REEC – Revista Eletrônica de Engenharia Civil 11:1

    Google Scholar 

  35. Barros E, Fucale S (2016) O uso de resíduos da construção civil como agregados na produção de concreto. Revista de Engenharia e Pesquisa Aplicada 2:1

    Article  Google Scholar 

  36. Barbosa LS, Batista VM, Neves KV, Santos RS (2020) Estudo da viabilidade da utilização de resíduos de polimento e retificação de cerâmica para fabricação de argamassa. Revista Matéria 25:4

    Google Scholar 

  37. Bravo-German AM, Bravo-Gómez ID, Mesa JA, Maury-Ramírez A (2021) Mechanical Properties of Concrete Using Recycled Aggregates Obtained from Old Paving Stones. Sustainability 13:6

    Article  Google Scholar 

  38. Cardoso AC, Lima IG, Ferreira MP, Souza RA (2021) Influence of recycled concrete aggregates on the shear strength of reinforced concrete beams. Revista Ibracon de Estruturas e Materiais 14:1

    Article  Google Scholar 

  39. Zhang D, Yang Q, Mao M, Li J (2020) “Carbonation performance of concrete with fly ash as fine aggregate after stress damage and high temperature exposure”. Const Build Mater 242

  40. Ho HJ, Iizuka A, Shibata E, Tomita H, Takano K, Endo T (2021) Utilization of CO2 in direct aqueous carbonation of concrete fines generated from aggregate recycling: influences of the solid liquid ratio and CO2 concentration.  J Clean Prod 312

  41. Silva RV, Neves R, Brito J, Dhir RK (2015) “Carbonation behavior of recycled aggregated concrete”. Cem Concr Compos 62:2015

  42. Santos TA, Andrade Neto JS and Ribeiro DV (2021) Processo de produção e tipos de cimento. In: Ribeiro, D. V. (Org.). Princípios da Ciência dos Materiais Cimentícios: Produção, Reações, Aplicações e Avanços Tecnológicos. (1 ed., pp. 29–60). Curitiba: Appris

  43. ABNT – Associação Brasileira de Normas Técnicas (2003) NBR NM 248: Agregados – Determinação da composição granulométrica. Rio de Janeiro

  44. ABNT – Associação Brasileira de Normas Técnicas (2007) NBR 7480: Aço destinado a armaduras das estruturas de concreto armado – Especificação. Rio de Janeiro

  45. ASTM International (2017) ASTM G1 03 – Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens, West Conshohocken

  46. ABNT – Associação Brasileira de Normas Técnicas (2019) NBR 7215: Cimento – Determinação da resistência à compressão. Rio de Janeiro

  47. ABNT – Associação Brasileira de Normas Técnicas (2018) NBR 5739: Concreto - Ensaio de compressão de corpos de prova cilíndricos. Rio de Janeiro

  48. Rahmouni I, Promis G, R'mili A, Beji H, Limam O (2019) “Effect of carbonated aggregates on the mechanical properties and thermal conductivity of eco-concrete”. Const Build Mater 197

  49. Lu C, Yang L, Li H, Liu R (2017) “Experimental Studies on Chloride Penetration and Steel Corrosion in Cracked Concrete Beams under Drying-Wetting Cycles”. J Mater Civil Eng 9

  50. ASTM International: ASTM C 876 – Standard Test Method for Corrosion Potentials of Uncoated Reinforcing Steel in Concrete. West Conshohocken 2015.

  51. ABNT – Associação Brasileira de Normas Técnicas. NBR 7211: Agregado para concreto – Especificação. Rio de Janeiro, 2019.

  52. Evangelista L, Guedes M, De Brito J, Ferro AC, Pereira MF (2015) Physical, chemical and mineralogical properties of fine recycled aggregates made from concrete waste. Constr Build Mater 86:178–188. https://doi.org/10.1016/j.conbuildmat.2015.03.112

    Article  Google Scholar 

  53. Alexandridou C, Angelopoulos GN, Coutelieris FA (2018) Mechanical and durability performance of concrete produced with recycled aggregates from Greek construction and demolition waste plants. J Clean Prod 176:745–757. https://doi.org/10.1016/j.jclepro.2017.12.081

    Article  Google Scholar 

  54. Ferreira RLS, Anjos MAS, Pereira JES, Fonseca NJM, Nóbrega AKC (2019) Evaluation of the physical, chemical and mineralogical properties of the fine fraction (<150 µm) of the recycled CDW aggregate. Ceramica 65:139–146. https://doi.org/10.1590/0366-69132019653732453

    Article  Google Scholar 

  55. Angulo SC, Ulsen C, John VM, Kahn H, Cincotto MA (2009) Chemical-mineralogical characterization of C&D waste recycled aggregates from São Paulo, Brazil. Waste Manag 29:721–730. https://doi.org/10.1016/j.wasman.2008.07.009

    Article  Google Scholar 

  56. Restuccia L, Spoto C, Ferro GA, Tulliani JM (2016) Recycled Mortars with C&D Waste. Procedia Struct Integr 2:2896–2904. https://doi.org/10.1016/j.prostr.2016.06.362

    Article  Google Scholar 

  57. Ulsen C, Kahn H, Hawlitschek G, Masini EA, Angulo SC (2013) Separability studies of construction and demolition waste recycled sand. Waste Manag 33:656–662. https://doi.org/10.1016/j.wasman.2012.06.018

    Article  Google Scholar 

  58. Contreras M, Teixeira SR, Lucas MC, Lima LCN, Cardoso DSL, da Silva GAC, Gregório GC, de Souza AE, dos Santos A (2016) Recycling of construction and demolition waste for producing new construction material (Brazil case-study). Constr Build Mater 123:594–600. https://doi.org/10.1016/j.conbuildmat.2016.07.044

    Article  Google Scholar 

  59. Liang C, Ma H, Pan Y, Ma Z, Duan Z, He, Z (2019) “Chloride permeability and the caused steel corrosion in the concrete with carbonated recycled aggregate”, Construction and Building Materials, 218.

  60. Rostami V, Shao Y, Boyd AJ, He Z (2020) “Microstructure of cement paste subject to early carbonation curing”, Cement and Concrete Research, 42.

  61. Lu B, Shi C, Zhang J, Wang J (2018) “Effects of carbonated hardened cement paste powder on hydration and microstructure of Portland cement”, Construction and Building Materials, 186.

  62. Liang C, Yang J, Pan Y, Tian Y (2018) “A review upon the recycled aggregate carbonation and its effect on the properties of recycled aggregate concrete”, Journal of Functional Materials, 49.

  63. Shi C, Wu Z, Cao Z, Ling TC, Zheng J (2018) “Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry”, Cement and Concrete Composites, 86.

  64. Guo MZ, Tu Z, Poon CS, Shi C (2018) “Improvement of properties of architectural mortars prepared with 100% recycled glass by CO2 curing”, Construction and Building Materials, 179.

  65. Araújo AL, França Neta MLX, Barros SVA, Dantas GCB, Neves GA (2021) Poder de mitigação da cinza de casca de arroz ao ataque por sulfatos em argamassas confeccionadas com resíduos de scheelita. Revista Matéria 26:3

    Google Scholar 

  66. Frotté C, Di Nubila CSA, Nagalli A, Mazer W, Macioski G, Oliveira LOS (2017) Estudo das propriedades físicas e mecânicas de concreto com substituição parcial de agregado natural por agregado reciclado proveniente de RCD. Revista Matéria 22:2

    Google Scholar 

  67. Werdine D, Oliver GA, Almeida FA, Noronha ML, Gomes GF (2021) “Analysis of the properties of the self-compacting concrete mixed with tire rubber waste based on design of experiments”, Structures, 33.

  68. Zhu P, Hao Y, Liu H, Wang X, Gu L (2020) “Durability evaluation of recycled aggregate concrete in a complex environment”, Journal of Cleaner Production, 273.

  69. ABNT – Associação Brasileira de Normas Técnicas. NBR 9779: Argamassa e concreto endurecidos. Determinação da absorção de água por capilaridade, índice de vazios e massa específica: Método de ensaio. Rio de Janeiro: ABNT, 2012.

  70. Ehrenbring HZ, Ott MJ, Cadore BC, Santo DLE, Tutikian BF (2020) Evaluation of mechanical properties of grouts substituting the natural coarse aggregate for ceramic civil construction waste. Matéria (Rio de Janeiro) 25:1

    Article  Google Scholar 

  71. Nascimento CFG, Monteiro ECBM, Souza E, Silva MG, Teixeira IAR, Vale LJS, Valões DCP, Cavalcanti LR, Figueira AMA, Pedrosa PGV (2020) “Viabilidade da Substituição Parcial do Resíduo de Construção Civil pelo Agregado Miúdo nas Propriedades Físicas e Mecânicas do Concreto”, Brazilian Journal of Development, 6.

  72. Di Domenico P, Lima TT, Castro RM, Castro MN (2018) “Influência do agregado miúdo reciclado na resistência à compressão e porosidade do concreto”, Revista Internacional de Ciências.

  73. Santos DOJ, Fontes CMA, Lima PRL (2017) Uso do agregado reciclado em matrizes cimentícias para compósitos reforçado com fibras de sisal. Revista Matéria 22:1

    Google Scholar 

  74. Castaño-Cardoza T, Linsel S, Alujas-Diaz A, Orozco-Morales R, Martirena-Hernández JF (2016) Influence of very fine fraction of mixed recycled aggregates on the mechanical properties and durability of mortars and concretes. Rev Fac Ing. 2016:81–92. https://doi.org/10.17533/udea.redin.n81a08

    Article  Google Scholar 

  75. Pradhan S, Kumar S, Barai SV (2017) Recycled aggregate concrete: Particle Packing Method (PPM) of mix design approach. Constr Build Mater 152:269–284. https://doi.org/10.1016/j.conbuildmat.2017.06.171

    Article  Google Scholar 

  76. Kasulanati ML, Pancharathi RK (2023) Particle Packing Approach for Proportioning Recycled Aggregate from Building Demolition Waste (BDW)—A Sustainable Solution. J Inst Eng Ser A 104:207–222. https://doi.org/10.1007/s40030-022-00684-8

    Article  Google Scholar 

  77. Kruger P, Serbai P, Chinelatto ASA, Pereira E (2021) Influence of particle size distribution of conventional fine aggregate and construction demolition waste aggregate in Portland cement mortar. Ceramica 67:269–276. https://doi.org/10.1590/0366-69132021673833035

    Article  Google Scholar 

  78. Lorenzetti E, Puton BMS, Steffens J, Junges A, Paroul N, Backes GT, Valduga E, Cansian RL (2019) Water absorption process capability analysis by chicken carcasses during precooling. Food Sci Technol 39:4

    Article  Google Scholar 

  79. Medeiros-Junior RA, Munhoz GS, Medeiros MHF (2019) Correlations between water absorption, electrical resistivity and compressive strength of concrete with different contents of pozzolan. Revista Alconpat 9:2

    Article  Google Scholar 

  80. Castro VG, Azambuja RR, Parchen CFA, Iwakiri S (2019) Alternative vibro-dynamic compression processing of wood-cement composites using Amazonian wood. Acta Amazon 49:1

    Article  Google Scholar 

  81. Abed M, Nemes R (2020) Los Angeles index and water absorption capacity of crushed aggregates. Pollack Periodica 15:1

    Article  Google Scholar 

  82. Mohseni E, Tang W, Khayat KH, Cui H (2020) “Thermal performance and corrosion resistance of structural-functional concrete made with inorganic PCM”, Construction and Building Materials, 249.

  83. Pham TM, Elchalakani M, Hao H, Lai J, Ameduri S, Tran TM (2019) “Durability characteristics of lightweight rubberized concrete”. Construction and Building Materials 224.

  84. Ma Z, Li W, Wu H, Cao C (2019) Chloride permeability of concrete mixed with activity recycled powder obtained from C&D waste. Construct Build Mater 199.

  85. Tang J, Wu J, Zou Z, Yue A, Mueller A (2018) “Influence of axial loading and carbonation age on the carbonation resistance of recycled aggregate concrete”. Construct Build Mater 173.

  86. Shi C, Wu Z, Cao Z, Ling TC, Zheng J (2018) Performance of mortar prepared with recycled concrete aggregate enhanced by CO2 and pozzolan slurry. Cement Concrete Compos 6.

  87. Xuan D, Zhan B, Poon CS (2016) “Assessment of mechanical properties of concrete incorporating carbonated recycled concrete aggregates. Cement Concrete Compos 65.

  88. Medeiros-Junior RA, Gans PS, Pereira E, Pereira E (2019) “Electrical resistivity of concrete exposed to chlorides and Sulfates. ACI Materials Journal 116.

  89. Berenguer R, Passos A, Monteiro E, Helene P, Just Â, Oliveira R, Medeiros M, Carneiro A (2018) Verificação de penetração de cloretos em corpos de prova parcialmente imersos em água do mar em Recife, Pernambuco. Revista ALCONPAT 8:2

    Article  Google Scholar 

  90. Angst U, Elsener B, Larsen CK, Vennesland O (2009) Critical chloride content in reinforced concrete – A review. Cem Concr Res 39:12

    Article  Google Scholar 

  91. Medeiros MHF, Rocha FC, Medeiros-Junior RA, Helene P (2017) Corrosion potential: influence of moisture, water-cement ratio, chloride content and concrete cover. Revista Ibracon de Estruturas e Materiais 10:4

    Article  Google Scholar 

  92. Liu W, Huang R, Fu J, Tang W, Dong Z, Cui H (2018) Discussion and experiments on the limits of chloride, sulphate and shell content in marine fine aggregates for concrete. Construct Build Mater 159.

  93. Tonioli SE, Mendonça YG, Neves Júnior A, Toledo Filho RD (2019) Efeitos da carbonatação acelerada em compósitos cimentícios. Eng Sci 8:3

    Google Scholar 

  94. Nunes DG (2014) Carbonatação acelerada em concretos compostos com cinza de casca de arroz de diferentes teores de carbono grafítico. Dissertação (Mestrado) Universidade Federal de Santa Maria.

  95. Felix EF, Possan E (2018) Balance emissions and CO2 uptake in concrete structures: simulation based on the cement content and type: simulation based on the cement content and type. Revista Ibracon de Estruturas e Materiais 11:1

    Article  Google Scholar 

  96. Neves Júnior A, Toledo Filho RDD, Weck J, Fairbairn EDMRA (2017) Study of CO2 capture by high initial strength Portland cement pastes at early curing stages by new nonconventional thermogravimetry and non-conventional differential thermal analysis. J Therm Anal Calorim 129:3

    Article  Google Scholar 

  97. Otieno M, Ikotun J, Ballim Y (2020) Experimental investigations on the effect of concrete quality, exposure conditions and duration of initial moist curing on carbonation rate in concretes exposed to urban, inland environment. Construct Build Mater 246.

  98. Resende C, Diniz AF, Martelli PB, Bueno AHS (2017) Corrosion Inhibitor Efficiency Rating to Concrete in Environments Contaminated with CO2 and Chloride Ions. Revista Virtual de Química 699–716.

  99. Chen L, Su RKL (2020) Effect of high rebar temperature during casting on corrosion in carbonated concrete. Construct Build Mater. 249.

  100. Tam VWY, Butera A, Le KN (2020) “Microstructure and chemical properties for CO2 concrete”, Construction and Building Materials 262.

  101. Zhang Y, Zhang J, Luo W, Wang J, Shi J, Zhuang H, Wang Y (2019) Effect of compressive strength and chloride diffusion on life cycle CO2 assessment of concrete containing supplementary cementitious materials. Journal of Cleaner Production 218.

  102. Paiva FFG, Tamashiro JR, Silva LHP, Kinoshita A (2021) Utilization of inorganic solid wastes in cementitious materials – A systematic literature review. Construction and Building Materials 285.

  103. Kabirifar K, Mojtahedi M, Wang CC (2021) A Systematic Review of Construction and Demolition Waste Management in Australia: current practices and challenges. Recycling 6:2

    Article  Google Scholar 

  104. ABNT – Associação Brasileira de Normas Técnicas (1998) NBR NM 76: Cimento Portland – Determinação da finura pelo método de permeabilidade ao ar (Blaine). Rio de Janeiro

  105. ABNT – Associação Brasileira de Normas Técnicas (1998) NBR NM 23: Cimento Portland – Determinação da massa específica. Rio de Janeiro

Download references

Acknowledgements

The authors are grateful to the University of Pernambuco, the Catholic University of Pernambuco, and Federal University of Pernambuco for their support. The authors are also grateful for the financial support of the Brazilian Agencies: FACEPE, CAPES and CNPq. Also, this work was supported by: Base Funding—UIDB/04708/2020 and Programmatic Funding—UIDP/04708/2020 of the CONSTRUCT—Instituto de I&D em Estruturas e Construções—funded by national funds through the FCT/MCTES (PIDDAC) and by FCT – Fundação para a Ciência e a Tecnologia through the individual Scientific Employment Stimulus 2020.00828.CEECIND.

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

Conception and design of study: T. M. Silva, C.F.G. Nascimento and E.C.B. Monteiro.

Acquisition of data: T. M. Silva, C.F.G. Nascimento and I.A.R. Teixeira.

Analysis and/or interpretation of data: T. M. Silva, C.F.G. Nascimento and A.A.M. Neto.

Drafting the manuscript: C.F.G. Nascimento, K.P.B.A Lima, I.V. Fernandes and J.M.P.Q. Delgado.

Revising the manuscript critically for important intellectual content: C.F.G. Nascimento, M.C.B.M. Oliveira, E.C.B. Monteiro and J.M.P.Q. Delgado.

Approval of the version of the manuscript to be published: T.M. Silva, C.F.G. Nascimento, I.A.R. Teixeira, K.P.B.A. Lima, I.V. Fernandes, M.C.B.M, Oliveira, E.C.B. Monteiro, A.A. Melo Neto and J.M.P.Q. Delgado.

Corresponding author

Correspondence to C. F. G. Nascimento.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.M., Nascimento, C.F.G., Teixeira, I.A.R. et al. Enhancing the physical performance of concrete containing construction and demolition waste against the effects of accelerated carbonation and chloride ingression. J Build Rehabil 9, 84 (2024). https://doi.org/10.1007/s41024-024-00417-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-024-00417-3

Keywords

Navigation