Skip to main content
Log in

Physical and mechanical characterization of calcined clays for use as supplementary cementitious material

  • Research Article
  • Published:
Journal of Building Pathology and Rehabilitation Aims and scope Submit manuscript

Abstract

Cement is the second most used material in the world. However, its production causes serious environmental impacts. The carbon dioxide emission of this type of industry has a significant contribution to global warming. The sustainability that civil construction promotes must not only be analysed after the construction of buildings, but in the entire construction stage, from the material to be used to the losses in the process. In this context, it is important to note that several alternatives have already been studied, such as the use of supplementary cementitious materials in concrete, such as rice husk ash, sugarcane bagasse and calcined clays. Although calcined clays are already used as a partial replacement for clinker in composite cements, several authors suggest that the material is capable of being used as a partial replacement for Portland cement. Thus, the objective of this work was to evaluate the potential application of calcined clays submitted to calcination thermal treatments for use as supplementary cementitious material. To achieve this objective, the clays were characterized and subsequently subjected to calcination in a muffle at temperatures equal to 500, 600, 700 and 800 °C, carrying out tests regarding the pozzolanic activity potential, performance as metakaolin and electrical conductivity. It was observed that for the proposed temperatures, the performance indices with Portland cement and use as metakaolin were met, demonstrating a high potential for use. Upon verifying the data found, the sample calcined at 800 °C showed the best results, both in mechanical performance (performance index with Portland cement and performance as metakaolin) and in the electrical conductivity test. In this sense, it appears that the use of calcined clays has the possibility of application as a material to minimize the adverse effects caused by the manufacture of Portland cement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The data is arranged in the paper.

References

  1. CEMBUREAU (2020) The European Cement Association. Activity report 2019

  2. Akhlaghi O, Aytas T, Tatli B, Sezer D, Hodaei A, Favier A, Scrivener K, Menceloglu YZ, Akbulut O (2017) Modified poly(carboxylate ether)-based superplasticizer for enhanced flowability of calcined clay–limestone–gypsum blended Portland cement. Cement Concr Res 101:114–122. https://doi.org/10.1016/j.cemconres.2017.08.028

    Article  Google Scholar 

  3. Provis JL (2014) Geopolymers and other alkali activated materials: why, how, and what? Mater Struct 47:11–25. https://doi.org/10.1617/s11527-013-0211-5

    Article  Google Scholar 

  4. Diaz-Loya I, Juenger M, Seraj S, Minkara R (2019) Extending supplementary cementitious material resources: reclaimed and remediated fly ash and natural pozzolans. Cement Concr Compos 101:44–51. https://doi.org/10.1016/j.cemconcomp.2017.06.011

    Article  Google Scholar 

  5. Shah V, Bishnoi S (2018) Carbonation resistance of cements containing supplementary cementitious materials and its relation to various parameters of concrete. Constr Build Mater 178:219–232. https://doi.org/10.1016/j.conbuildmat.2018.05.162

    Article  Google Scholar 

  6. Scrivener KL (2004) Options for the future of cement. Indian Concr J 88:11–21

    Google Scholar 

  7. IEA, WBCSD (2009) Cement technology roadmap 2009, carbon emissions reductions up to 2050

  8. World Business Council for Sustainable Development-WBCSD (2016) Cement sustainability initiative, getting the numbers right

  9. Battagin AF, da Battagin ILS (2017) Materiais de construção civil e princípios de ciência e engenharia dos materiais, 3rd edn. IBRACON, São Paulo

    Google Scholar 

  10. Da Silva MG, Battagin A, Gomes V (2017) Materiais de construção civil e princípios de ciência e engenharia dos materiais, 3rd edn. IBRACON, São Paulo

    Google Scholar 

  11. Associação Brasileira de Norma Técnicas (2018) NBR 16697: cimento Portland—requisitos

  12. Scrivener KL, John VM, Gartner E (2018) Eco-efficient cements: Potencial, economically viable solutions for a low-CO2, cement-based materials industry. Cement Concr Res 114:2–26. https://doi.org/10.1016/j.cemconres.2018.03.015

    Article  Google Scholar 

  13. de Kazmierczak CS (2017) Materiais de construção civil e princípios de ciência e engenharia dos materiais, 3rd edn. IBRACON, São Paulo

    Google Scholar 

  14. Juenger M, Snellings R, Bernal S (2019) Supplementary cementitious materials: new sources, characterization, and performance insights. Cement Concr Res 122:257–273. https://doi.org/10.1016/j.cemconres.2019.05.008

    Article  Google Scholar 

  15. Nicoara AI, Stoica AE, Vrabec M, Šmuc Rogan N, Sturm S, Ow-Yang C, Gulgun MA, Bundur ZB, Ciuca I, Vasile BS (2020) End-of-life materials used as supplementary cementitious materials in the concrete industry. Materials 13:1954. https://doi.org/10.3390/ma13081954

    Article  Google Scholar 

  16. Juenger MCG, Siddique R (2015) Recent advances in understanding the role of supplementary cementitious materials in concrete. Cement Concr Res 78:71–80. https://doi.org/10.1016/j.cemconres.2015.03.018

    Article  Google Scholar 

  17. Skibsted J, Snellings R (2019) Reactivity of supplementary cementitious materials (SCMs) in cement blends. Cement Concr Res 124:105799. https://doi.org/10.1016/j.cemconres.2019.105799

    Article  Google Scholar 

  18. Beuntner N, Sposito R, Thienel K (2019) Potential of calcined mixed layer clays as pozzolans in concrete. ACI Mater J 116: 19–29. https://doi.org/10.14359/51716677

  19. Bediako M, Purohir S, Kevern J (2017) An investigation into Ghanaian calcined clay as a supplementary cementitious material. ACI Mater J 114(6): 889. https://doi.org/10.14359/51700896

  20. Hoppe Filho J, Pires CAO, Leite OD, Garcez MR, Medeiros MHF (2021) Red ceramic waste as supplementary cementitious material: Microstructure and mechanical properties. Construct Build Mater 296:123653. https://doi.org/10.1016/j.conbuildmat.2021.123653

  21. Sindicato Nacional da Indústria do Cimento-SNIC (2020) Relatório anual 2020, São Paulo

  22. Arslan F, Benli A, Karatas M (2020) Effect of high temperature on the performance of self-compacting mortars produced with calcined kaolin and metakaolin. Construct Build Mater. https://doi.org/10.1016/j.conbuildmat.2020.119497

    Article  Google Scholar 

  23. Rakhimov RZ, Rakhimova NR, Gayfullin AR, Morozov VP (2018) Effect of the addition of thermally activated heavy loam to portland cement on the properties of cement stone. Inorg Mater Appl Res 9:679–686. https://doi.org/10.1134/S2075113318040330

    Article  Google Scholar 

  24. Associação Brasileira de Norma Técnicas (2015) NBR 7214: areia normal para ensaio de cimento—especificação

  25. Associação Brasileira de Norma Técnicas (2014) NBR 5752: materiais pozolânicos—determinação do índice de desempenho com cimento Portland aos 28 dias

  26. Associação Brasileira de Norma Técnicas (2010) NBR 15894-2: metacaulim para uso com cimento Portland em concreto, argamassa e pasta—Parte 2: Determinação do índice de desempenho com cimento aos sete dias

  27. Alujas A, Fernandéz R, Quintana R, Scrivener KL, Martirena F (2015) Pozzolanic reactivity of lowgrade kaolinitic clays: influence of calcination temperature and impact of calcination products on OPC hydration. Appl Clay Sci 108:94–101. https://doi.org/10.1016/j.clay.2015.01.028

    Article  Google Scholar 

  28. Danner T, Norden G, Justnes H (2018) Characterisation of calcined raw clays suitable as supplementary cementitious materials. Appl Clay Sci 162:391–402. https://doi.org/10.1016/j.clay.2018.06.030

    Article  Google Scholar 

  29. Pouey MTF (2006) Beneficiamento da cinza de casca de arroz residual com vistas à produção de cimento composto e/ou pozolânico. Tese de Doutorado. UFRGS, Porto Alegre

  30. Cordeiro LNP (2009) Análise da variação do índice de amorfismo da cinza de casca de arroz sobre a atividade pozolânica. Dissertação de Mestrado. UFRGS, Porto Alegre

  31. Ministério dos Transportes (1994) DNER-ME 093: determinação da densidade real

  32. Associação Brasileira de Norma Técnicas (2003) NBR NM 24: materiais pozolânicos—determinação do teor de umidade

  33. Associação Brasileira de Norma Técnicas (2012) NBR NM 18: cimento Portland—análise química—determinação de perda ao fogo

  34. Luxán MP, Madruga F, Saavedra J (1989) Rapid evaluation of pozzolanic activity of natural products by conductivity measurement. Cement Concr Res 19:63–68. https://doi.org/10.1016/0008-8846(89)90066-5

    Article  Google Scholar 

  35. Rodrigues GGO (2022) Estudo da calcinação “flash” de argila ilítica para produção de material cimentício suplementar. Dissertação de Mestrado. FURB, Blumenau

  36. Tironi A, Trezza MA, Scian AN, Irassar EF (2013) Assessment of pozzolanic activity of different calcined clays. Cement Concr Compos 37:319–327. https://doi.org/10.1016/j.cemconcomp.2013.01.002

    Article  Google Scholar 

  37. Tironi A, Trezza MA, Scian AN, Irassar EF (2014) Thermal analysis to assess pozzolanic activity of calcined kaolinitic clays. J Therm Anal Colorim 117(2):547–556. https://doi.org/10.1007/s10973-014-3816-1

    Article  Google Scholar 

  38. Chen Y, He S, Zhang Y, Wan Z, Oğuzhan Ç, Schlangen E (2021) 3D printing of calcined clay-limestone-based cementitious materials. Cement Concr Res. https://doi.org/10.1016/j.cemconres.2021.106553

    Article  Google Scholar 

  39. Hung W, Kazemi-Kamyab H, Sun W, Scrivener K (2017) Effect of replacement of silica fume with calcined clay on the hydration and microstructural development of eco-UHPFRC. Mater Des 121:36–46. https://doi.org/10.1016/j.matdes.2017.02.052

    Article  Google Scholar 

  40. Taylor-Lange SC, Lamon EL, Riding KA, Juengen MCG (2015) Calcined kaolinite–bentonite clay blends as supplementary cementitious materials. Appl Clay Sci 108:84–93. https://doi.org/10.1016/j.clay.2015.01.025

    Article  Google Scholar 

  41. Associação Brasileira de Norma Técnicas (2015) NBR 12653: materiais pozolânicos—requisitos

  42. Garcia E, Cabral Junior M, Quarcioni VA, Chotoli FF (2016) Avaliação da atividade pozolânica dos resíduos de cerâmica vermelha produzidos nos principais polos ceramistas do Estado de S. Paulo Cerâmica 61:251–258. https://doi.org/10.1590/0366-69132015613581847

    Article  Google Scholar 

  43. Pavesi TB (2020) Emprego de resíduos da construção civil de cerâmica vermelha (RCCCV) em substituição parcial do cimento Portland no concreto convencional. Dissertação de Mestrado. FURB, Blumenau

  44. Matos Neto JA (2013) Caracterização de estéril argiloso para utilização como pozolana. Dissertaçãode Mestrado, Universidade Federal de Ouro Preto, Ouro Preto

    Google Scholar 

  45. Sebastiany LD (2014) Avaliação de métodos de determinação do potencial pozolânico de resíduos da indústria cerâmica vermelha. Dissertação de Mestrado, Universidade do Vale do Rio dos Sinos, São Leopoldo

    Google Scholar 

  46. Associação Brasileira de Norma Técnicas (2010) NBR 15894-1: metacaulim para uso com cimento Portland em concreto, argamassa e pasta—Parte 1: requisitos. Rio de Janeiro

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design of the study. Material preparation, data collection and analysis were carried out by GC. The main text of the manuscript was written by GGdOR and NS. ABR revised the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Gustavo Gutierrez de Oliveira Rodrigues.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, G.G.O., Salamoni, N., Rohden, A.B. et al. Physical and mechanical characterization of calcined clays for use as supplementary cementitious material. J Build Rehabil 8, 63 (2023). https://doi.org/10.1007/s41024-023-00308-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s41024-023-00308-z

Keywords

Navigation