Skip to main content
Log in

Influence of Low Silt Content on the Anisotropic Behaviour of Sand

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Most natural sandy deposits contain low amounts of fine content (< 10%), which is usually anisotropic and characterized by complex microstructures. The present study investigates the influence of low silt content on the anisotropic behaviour of sand. For this purpose, 30 undrained tests were performed using a hollow cylindrical apparatus with constant α° and b values on Firoozkuh sand. The specimens had silt contents of 0, 3, 5, 7 and 10%, and the inclination angle (α°) was varied from 15° to 60°. The specimens were prepared with the dry deposition method and subjected to confining pressures of 100 and 200 kPa. The equivalent intergranular relative density parameter was then introduced in order to create a comparative basis for the specimens. The experimental results show that increasing α leads to more contractive behaviour in the pure sand. By adding silt particles to the host sand up to 5%, the peak strength of the specimen is increased (18.5%, 12% and 7.7% for α = 15°, 30° and 60°, respectively), and the strength of the specimen is decreased. It should be noted that with a silt content of 10%, the strength of the specimen was lower than that of the host sand (about 12%). On the other hand, it can be seen that with the increase of α, the influence of fine grains as an important parameter in sand-fine mixtures is decreased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability statement

Data generated or analyzed during this study are provided in full within the published article.

References

  1. Ishihara K, Towhata I (1983) Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils Found 23(4):11–26. https://doi.org/10.3208/sandf1972.23.4_11

    Article  Google Scholar 

  2. Guo PJ, Stolle DF (2005) On the failure of granular materials with fabric effects. Soils Found 45(4):1–12. https://doi.org/10.3208/sandf.45.4_1

    Article  Google Scholar 

  3. Radjai F, Azéma E (2009) Shear strength of granular materials. Eur J Environ Civil Eng 13(2):203–218. https://doi.org/10.1080/19648189.2009.9693100

    Article  Google Scholar 

  4. Wrzesinski G, Lechowicz Z (2013) Influence of the rotation of principal stress directions on undrained shear strength. Annals of Warsaw University of life sciences-SGGW. Land Reclam. 45(2):183

    Google Scholar 

  5. Shogaki T, Kumagai N (2008) A slope stability analysis considering undrained strength anisotropy of natural clay deposits. Soils Found 48(6):805–819. https://doi.org/10.3208/sandf.48.805

    Article  Google Scholar 

  6. Wrzesiński G (2021) Anisotropy of soil shear strength parameters caused by the principal stress rotation. Arch Civ Eng 67:163–187. https://doi.org/10.24425/ace.2021.136467

    Article  Google Scholar 

  7. Pradel D, Ishihara K, Gutierrez M (1990) Yielding and flow of sand under principal stress axes rotation. Soils Found 30(1):87–99. https://doi.org/10.3208/sandf1972.30.87

    Article  Google Scholar 

  8. Gutierrez M, Ishihara K, Towhata I (1991) Flow theory for sand during rotation of principal stress direction. Soils Found 31(4):121–132. https://doi.org/10.3208/sandf1972.31.4_121

    Article  Google Scholar 

  9. Sivathayalan S, Vaid Y (2002) Influence of generalized initial state and principal stress rotation on the undrained response of sands. Can Geotech J 39(1):63–76. https://doi.org/10.1139/t01-078

    Article  Google Scholar 

  10. Lade PV, Nam J, Hong WP (2008) Shear banding and cross-anisotropic behavior observed in laboratory sand tests with stress rotation. Can Geotech J 45(1):74–84. https://doi.org/10.1139/T07-078

    Article  Google Scholar 

  11. Rodriguez NM, Lade PV (2013) Effects of principal stress directions and mean normal stress on failure criterion for cross-anisotropic sand. J Eng Mech 139(11):1592–1601. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000595

    Article  Google Scholar 

  12. Farshbaf Aghajani H, Salehzadeh H (2015) Anisotropic behavior of the Bushehr carbonate sand in the Persian Gulf. Arab J Geosci 8:8197–8217. https://doi.org/10.1007/s12517-014-1758

    Article  Google Scholar 

  13. Yang L-T et al (2016) A laboratory study of anisotropic geomaterials incorporating recent micromechanical understanding. Acta Geotech 11:1111–1129. https://doi.org/10.1007/s11440-015-0423-7

    Article  Google Scholar 

  14. Ghadr S, Bahadori H, Assadi-Langroudi A (2019) Anisotropy in sand–fibre composites and undrained stress–strain implications. Int J Geosynth Ground Eng 5:1–13. https://doi.org/10.1007/s40891-019-0174-x

    Article  Google Scholar 

  15. Al-Rkaby AH, Nikraz H, Chegenizadeh A (2017) Stress and deformation characteristics of nonwoven geotextile reinforced sand under different directions of principal stress. Int J Geosynth Ground Eng 3:1–11. https://doi.org/10.1007/s40891-017-0111-9

    Article  Google Scholar 

  16. Yoshimine M, Ishihara K, Vargas W (1998) Effects of principal stress direction and intermediate principal stress on undrained shear behavior of sand. Soils Found 38(3):179–188. https://doi.org/10.3208/sandf.38.3_179

    Article  Google Scholar 

  17. Uthayakumar M, Vaid Y (1998) Static liquefaction of sands under multiaxial loading. Can Geotech J 35(2):273–283. https://doi.org/10.1139/t98-007

    Article  Google Scholar 

  18. Bahadori H, Ghalandarzadeh A, Towhata I (2008) Effect of non plastic silt on the anisotropic behavior of sand. Soils Found 48(4):531–545. https://doi.org/10.3208/sandf.48.531

    Article  Google Scholar 

  19. Kumruzzaman M, Yin J-H (2010) Influences of principal stress direction and intermediate principal stress on the stress–strain–strength behaviour of completely decomposed granite. Can Geotech J 47(2):164–179. https://doi.org/10.1139/T09-079

    Article  Google Scholar 

  20. Cai Y et al (2013) Noncoaxial behavior of sand under various stress paths. J Geotech Geoenviron Eng 139(8):1381–1395. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000854

    Article  Google Scholar 

  21. Wrzesiński G, Lechowicz Z (2015) Testing of undrained shear strength in a hollow cylinder apparatus. Stud Geotechn Mech 37(2):69–73. https://doi.org/10.1515/sgem-2015-0023

    Article  Google Scholar 

  22. Xiong H et al (2016) Experimental study of drained anisotropy of granular soils involving rotation of principal stress direction. Eur J Environ Civil Eng 20(4):431–454. https://doi.org/10.1080/19648189.2015.1039662

    Article  Google Scholar 

  23. Salgado R, Bandini P, Karim A (2000) Shear strength and stiffness of silty sand. J Geotech Geoenviron Eng 126(5):451–462. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:5(451)

    Article  Google Scholar 

  24. Missoum H et al (2013) Laboratory investigation into the effects of silty fines on liquefaction susceptibility of Chlef (Algeria) sandy soils. Geotech Geol Eng 31:279–296. https://doi.org/10.1007/s10706-012-9590-6

    Article  Google Scholar 

  25. Peng D et al (2018) Distribution and failure modes of the landslides in Heitai terrace. Chin Eng Geol 236:97–110. https://doi.org/10.1016/j.enggeo.2017.09.016

    Article  Google Scholar 

  26. Krim A et al (2019) Experimental study on the liquefaction resistance of sand–clay mixtures: effect of clay content and grading characteristics. Mar Georesour Geotechnol 37(2):129–141. https://doi.org/10.1080/1064119X.2017.1407974

    Article  Google Scholar 

  27. Guo C, Cui Y (2020) Pore structure characteristics of debris flow source material in the Wenchuan earthquake area. Eng Geol 267:105499. https://doi.org/10.1016/j.enggeo.2020.105499

    Article  Google Scholar 

  28. Yamamuro JA, Lade PV (1998) Steady-state concepts and static liquefaction of silty sands. J Geotech Geoenviron Eng 124(9):868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868)

    Article  Google Scholar 

  29. Chang CS, Yin Z-Y (2011) Micromechanical modeling for behavior of silty sand with influence of fine content. Int J Solids Struct 48(19):2655–2667. https://doi.org/10.1016/j.ijsolstr.2011.05.014

    Article  Google Scholar 

  30. Yin Z-Y, Zhao J, Hicher P-Y (2014) A micromechanics-based model for sand-silt mixtures. Int J Solids Struct 51(6):1350–1363. https://doi.org/10.1016/j.ijsolstr.2013.12.027

    Article  Google Scholar 

  31. Jradi L et al (2022) Influence of low fines content on the liquefaction resistance of sands. Eur J Environ Civil Eng 26(12):6012–6031. https://doi.org/10.1080/19648189.2021.1927195

    Article  Google Scholar 

  32. Yamamuro JA, Covert KM (2001) Monotonic and cyclic liquefaction of very loose sands with high silt content. J Geotech Geoenviron Eng 127(4):314–324. https://doi.org/10.1061/(ASCE)1090-0241(2001)127:4(314)

    Article  Google Scholar 

  33. Zlatovic S, Ishihara K (1997) Normalized behavior of very loose non-plastic soils: effects of fabric. Soils Found 37(4):47–56. https://doi.org/10.3208/sandf.37.4_47

    Article  Google Scholar 

  34. Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34(6):918–928. https://doi.org/10.1139/t97-052

    Article  Google Scholar 

  35. Stamatopoulos CA (2010) An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dyn Earthq Eng 30(8):662–678. https://doi.org/10.1016/j.soildyn.2010.02.008

    Article  Google Scholar 

  36. Amini F, Qi G (2000) Liquefaction testing of stratified silty sands. J Geotech Geoenviron Eng 126(3):208–217. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:3(208)

    Article  Google Scholar 

  37. Khayat N, Ghalandarzadeh A, Jafari MK (2014) Grain shape effect on the anisotropic behaviour of silt–sand mixtures. Geotech. Eng. J 167(3):281–296. https://doi.org/10.1680/geng.11.00093

    Article  Google Scholar 

  38. Polito CP, Martin JR (2003) A reconciliation of the effects of non-plastic fines on the liquefaction resistance of sands reported in the literature. Earthq Spectra 19(3):635–651. https://doi.org/10.1193/1.1597878

    Article  Google Scholar 

  39. Huang Y-T et al (2004) A laboratory study on the undrained strength of a silty sand from Central Western Taiwan. Soil Dyn Earthq Eng 24(9–10):733–743. https://doi.org/10.1016/j.soildyn.2004.06.013

    Article  Google Scholar 

  40. Dash H, Sitharam T (2011) Undrained monotonic response of sand–silt mixtures: effect of nonplastic fines. J Geomech Geoeng Int J 6(1):47–58. https://doi.org/10.1080/17486021003706796

    Article  Google Scholar 

  41. ASTM, ASTM. D4253 (2006) Standard test methods for maximum index density and unit weight of soils using a vibratory table. ASTM International, West Conshohocken

    Google Scholar 

  42. ASTM, ASTM. D4253 (2006) Standard test methods for minimum index density and unit weight of soils and calculation ofrelative density. ASTM International, West Conshohocken

    Google Scholar 

  43. Thevanayagam S, Mohan S (2000) Intergranular state variables and stress–strain behaviour of silty sands. Géotechnique 50(1):1–23. https://doi.org/10.1680/geot.2000.50.1.1

    Article  Google Scholar 

  44. Thevanayagam S et al (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

    Article  Google Scholar 

  45. Yang S, Sandven R, Grande L (2006) Instability of sand–silt mixtures. Soil Dyn Earthq Eng 26(2–4):183–190. https://doi.org/10.1016/j.soildyn.2004.11.027

    Article  Google Scholar 

  46. Papadopoulou A, Tika T (2008) The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found 48(5):713–725. https://doi.org/10.3208/sandf.48.713

    Article  Google Scholar 

  47. Belkhatir M et al (2010) Influence of inter-granular void ratio on monotonic and cyclic undrained shear response of sandy soils. C R Mecanique 338(5):290–303. https://doi.org/10.1016/j.crme.2010.04.002

    Article  Google Scholar 

  48. Maleki M et al (2011) Effect of physical parameters on static undrained resistance of sandy soil with low silt content. Soil Dyn Earthq Eng 31(10):1324–1331. https://doi.org/10.1016/j.soildyn.2011.05.003

    Article  Google Scholar 

  49. Cabalar A, Hasan R (2013) Compressional behaviour of various size/shape sand–clay mixtures with different pore fluids. Eng Geol 164:36–49. https://doi.org/10.1016/j.enggeo.2013.06.011

    Article  Google Scholar 

  50. Deng Y et al (2017) Sand fraction effect on hydro-mechanical behavior of sand-clay mixture. Appl Clay Sci 135:355–361. https://doi.org/10.1016/j.clay.2016.10.017

    Article  Google Scholar 

  51. Rahman MM, Lo S, Gnanendran C (2008) On equivalent granular void ratio and steady state behaviour of loose sand with fines. Can Geotech J 45(10):1439–1456. https://doi.org/10.1139/T08-064

    Article  Google Scholar 

  52. Thevanayagam S, Martin G (2002) Liquefaction in silty soils-screening and remediation issues. Soil Dyn Earthq Eng 22(9–12):1035–1042. https://doi.org/10.1016/S0267-7261(02)00128-8

    Article  Google Scholar 

  53. Yang J, Wei L, Dai B (2015) State variables for silty sands: global void ratio or skeleton void ratio? Soils Found 55(1):99–111. https://doi.org/10.1016/j.sandf.2014.12.008

    Article  Google Scholar 

  54. Ni Q et al (2004) Contribution of fines to the compressive strength of mixed soils. Géotechnique 54(9):561–569. https://doi.org/10.1680/geot.2004.54.9.561

    Article  Google Scholar 

  55. Rees, S.D. (2010) Effects of fines on the undrained behaviour of Christchurch sandy soils. PhD thesis, University of Canterbury, Christchurch, New Zealand

  56. Mohammadi A, Qadimi A (2015) A simple critical state approach to predicting the cyclic and monotonic response of sands with different fines contents using the equivalent intergranular void ratio. Acta Geotech 10:587–606. https://doi.org/10.1007/s11440-014-0318-z

    Article  Google Scholar 

  57. Miura S, Toki S (1982) A sample preparation method and its effect on static and cyclic deformation-strength properties of sand. Soils Found 22(1):61–77. https://doi.org/10.3208/sandf1972.22.61

    Article  Google Scholar 

  58. ASTM, ASTM D4767-11 (2020) Standard test method for consolidated undrained triaxial compression test for cohesive soils. ASTM International, West Conshohocken

    Google Scholar 

  59. Yang J, Savidis S, Roemer M (2004) Evaluating liquefaction strength of partially saturated sand. J Geotech Geoenviron Eng 130(9):975–979. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:9(975)

    Article  Google Scholar 

  60. Bouferra R, Benseddiq N, Shahrour I (2007) Saturation and preloading effects on the cyclic behavior of sand. Int J Geomech 7(5):396–401. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:5(396)

    Article  Google Scholar 

  61. Li X, Yu H-S (2009) Influence of loading direction on the behavior of anisotropic granular materials. Int J Eng Sci 47(11–12):1284–1296. https://doi.org/10.1016/j.ijengsci.2009.03.001

    Article  Google Scholar 

  62. Murthy T et al (2007) Undrained monotonic response of clean and silty sands. Géotechnique 57(3):273–288. https://doi.org/10.1680/geot.2007.57.3.273

    Article  Google Scholar 

  63. Bishop AW (1971) Shear strength parameters for undisturbed and remolded soil specimens. Roscoe Memorial Symp. Cambridge University, Cambridge, pp 3–58

    Google Scholar 

  64. Sadrekarimi A (2016) Static liquefaction analysis considering principal stress directions and anisotropy. Geotech Geol Eng 34:1135–1154. https://doi.org/10.1007/s10706-016-0033-7

    Article  Google Scholar 

  65. Keramatikerman M et al (2018) Effect of flyash on liquefaction behaviour of sand-bentonite mixture. Soils Found 58(5):1288–1296. https://doi.org/10.1016/j.sandf.2018.07.004

    Article  Google Scholar 

  66. Zarei C, Soltani-Jigheh H, Badv K (2019) Effect of inherent anisotropy on the behavior of fine-grained cohesive soils. Int J Civ Eng 17:687–697. https://doi.org/10.1007/s40999-018-0292-1

    Article  Google Scholar 

Download references

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design.

Corresponding author

Correspondence to Hadi Bahadori.

Ethics declarations

Conflict of interest

The authors have no relevant financial or non-financial interests to disclose.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammadi, V., Bahadori, H. Influence of Low Silt Content on the Anisotropic Behaviour of Sand. Int J Civ Eng (2024). https://doi.org/10.1007/s40999-024-00964-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40999-024-00964-3

Keywords

Navigation