Fan C-C, Su C-F (2008) Role of roots in the shear strength of root-reinforced soils with high moisture content. Ecol Eng 33:157–166. https://doi.org/10.1016/j.ecoleng.2008.02.013
Article
Google Scholar
Mickovski SB, Van Beek LPH (2009) Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate. Plant Soil 324:43–56. https://doi.org/10.1007/s11104-009-0130-y
Article
Google Scholar
Nawagamuwa UP, Sarangan S, Janagan B, Neerajapriya S (2014) Study on the effect of plant roots for stability of slopes. In: Landslide Science for a Safer Geoenvironment. Springer International Publishing, Cham, pp 153–158. https://doi.org/10.1007/978-3-319-05050-8_25.
Chenari RJ, Pishkhani SS, Fard MK, Sosahab JS (2018) Experimental and numerical investigation of dynamic properties of soil stabilized by young Vetiver. Ital Geotech J 52(1):49–58. https://doi.org/10.19199/2017.4.0557-1405.47.
Foresta V, Capobianco V, Cascini L (2020) Influence of grass roots on shear strength of pyroclastic soils. Can Geotech J 57:1320–1334. https://doi.org/10.1139/cgj-2019-0142
Article
Google Scholar
Toulegilan MM, Chenari RJ, Neshaei MAL, Forghani A (2020) Changes in stability conditions of clay slopes due to leaching: a case study. SN Appl Sci 2(6):1–10. https://doi.org/10.1007/s42452-020-2831-z
Article
Google Scholar
Fan C-C, Lai Y-F (2014) Influence of the spatial layout of vegetation on the stability of slopes. Plant Soil 377:83–95. https://doi.org/10.1007/s11104-012-1569-9
Article
Google Scholar
Liang T, Bengough AG, Knappett JA, MuirWood D, Loades KW, Hallett PD, Boldrin D, Leung AK, Meijer GJ (2017) Scaling of the reinforcement of soil slopes by living plants in a geotechnical centrifuge. Ecol Eng 109:207–227. https://doi.org/10.1016/j.ecoleng.2017.06.067
Article
Google Scholar
Chiatante D, Scippa SG, Di Iorio A, Sarnataro M (2002) The influence of steep slopes on root system development. J Plant Growth Regul 21:247–260. https://doi.org/10.1007/s00344-003-0012-0
Article
Google Scholar
Burylo M, Hudek C, Rey F (2011) Soil reinforcement by the roots of six dominant species on eroded mountainous marly slopes (Southern Alps, France). CATENA 84:70–78. https://doi.org/10.1016/j.catena.2010.09.007
Article
Google Scholar
Ghestem M, Cao K, Ma W, Rowe N, Leclerc R, Gadenne C, Stokes A (2014) A framework for identifying plant species to be used as ecological engineers for fixing soil on unstable slopes. PLoS ONE 9:8. https://doi.org/10.1371/journal.pone.0095876
Article
Google Scholar
Garnier J, Gaudin C, Springman SM, Culligan PJ, Goodings D, Konig D, Kutter B, Phillips R, Randolph MF, Thorel L (2007) Catalogue of scaling laws and similitude questions in geotechnical centrifuge modelling. Int J Phys Model Geotech 7(3):1–23. https://doi.org/10.1680/ijpmg.2007.070301
Article
Google Scholar
Tl C, Zhou C, Gl W, El L, Dai F (2017) Centrifuge model test on unsaturated expansive soil slopes with cyclic wetting–drying and inundation at the slope toe. Int J Civ Eng 16:1341–1360. https://doi.org/10.1007/s40999-017-0228-1
Article
Google Scholar
Yaghoobzadeh S, Azizkandi AS, Salehzadeh H, Hasanaklou SH (2021) Effect of EPS beads on the behavior of sand–EPS and slope stability using triaxial and centrifuge tests. Int J Civ Eng 19:1269–1282. https://doi.org/10.1007/s40999-021-00617-9
Article
Google Scholar
Sonnenberg R, Davies MC, Bransby MF, Hallett PD, Bengough AG, Mickovski SB, Hudacsek P (2007) Centrifuge modelling of slope reinforcement by vegetation. In: Proceedings of the 14th European conference on soil mechanics and geotechnical engineering, Madrid. 3. 1551–1556.
Sonnenberg R, Bransby MF, Hallett PD, Bengough AG, Mickovski SB, Davies MC (2010) Centrifuge modelling of soil slopes reinforced with vegetation. Can Geotech J 47:1415–1430. https://doi.org/10.1139/T10-037
Article
Google Scholar
Sonnenberg R, Bransby MF, Bengough AG, Hallett PD, Davies MCR (2012) Centrifuge modelling of soil slopes containing model plant roots. Can Geotech J 49:1–17. https://doi.org/10.1139/t11-081
Article
Google Scholar
Eab KH, Likitlersuang S, Takahashi A (2015) Laboratory and modelling investigation of root-reinforced system for slope stabilisation. Soils Found 55:1270–1281. https://doi.org/10.1016/j.sandf.2015.09.025
Article
Google Scholar
Liang T, Knappett JA (2015) Centrifuge modelling of vegetated slopes under earthquake loading. In: 6ICEGE-6th International Conference On Earthquake Geotechnical Engineering, Christchurch, New Zealand. Christchurch, New Zealand
Liang T, Knappett JA, Bengough AG, Ke YX (2017) Small-scale modelling of plant root systems using 3D printing, with applications to investigate the role of vegetation on earthquake-induced landslides. Landslides 14:1747–1765. https://doi.org/10.1007/s10346-017-0802-2
Article
Google Scholar
Chok YH, Kaggwa WS, Jaksa MB, Griffiths DV (2004) Modelling the effects of vegetation on stability of slopes. In: Proceedings of the 9th Australia New Zealand Conference on Geomechanics. Centre for Continuing Education, Uni Auckland, Auckland, New Zealand, pp 391–397
Gentile F, Elia G, Elia R (2010) Analysis of the stability of slopes reinforced by roots. In: WIT Transactions on Ecology and the Environment. WIT Press, pp 189–200. https://doi.org/10.2495/DN100171.
Stanier SA, Blaber J, Take WA, White DJ (2016) Improved image-based deformation measurement for geotechnical applications. Can Geotech J 53:727–739. https://doi.org/10.1139/cgj-2015-0253
Article
Google Scholar
White DJ, Take WA (2002) GeoPIV: Particle Image Velocimetry (PIV) software for use in geotechnical testing
Carvajal D (2021) Physical modeling of the effect of suction on slope stability in fine soil (In spanish). Dissertation, Escuela Colombiana de Ingeniería Julio Garavito
Rocha Y (2021) Physical modeling in centrifuge of the effect of root type on slope stability (In spanish). Dissertation, Escuela Colombiana de Ingeniería Julio Garavito.
Noorasyikin MN, Zainab M (2016) A Tensile strength of bermuda grass and vetiver grass in terms of root reinforcement ability toward soil slope stabilization. IOP Conf Ser Mater Sci Eng. https://doi.org/10.1088/1757-899X/136/1/012029
Article
Google Scholar
Aggarwal P, Choudhary KK, Singh AK, Chakraborty D (2006) Variation in soil strength and rooting characteristics of wheat in relation to soil management. Geoderma 136:353–363. https://doi.org/10.1016/j.geoderma.2006.04.004
Article
Google Scholar
Divya PV, Viswanadham BVS, Gourc JP (2017) Centrifuge model study on the performance of fiber reinforced clay-based landfill covers subjected to flexural distress. Appl Clay Sci 142:173–184. https://doi.org/10.1016/j.clay.2016.12.010
Article
Google Scholar
Moreno-Espíndola IP, Rivera-Becerril F, de Jesús Ferrara-Guerrero M, De León-González F (2007) Role of root-hairs and hyphae in adhesion of sand particles. Soil Biol Biochem 39(10):2520–2526. https://doi.org/10.1016/j.soilbio.2007.04.021.
Cohen D, Schwarz M, Or D (2011) An analytical fiber bundle model for pullout mechanics of root bundles. J Geophys Res 116(F3). https://doi.org/10.1029/2010JF001886.
Schwarz M, Cohen D, Or D (2011) Pullout tests of root analogs and natural root bundles in soil: Experiments and modeling. J Geophys Res 116(F2). https://doi.org/10.1029/2010JF001753.
Soric Z, Galic J, Rukavina T (2008) Determination of tensile strength of glass fiber straps. Mater Struct Constr 41:879–890. https://doi.org/10.1617/s11527-007-9291-4
Article
Google Scholar
Wu Z, Leung AK, Boldrin D, Ganesan SP (2021) Variability in root biomechanics of Chrysopogon zizanioides for soil eco-engineering solutions. Sci Total Environ 776:145943. https://doi.org/10.1016/j.scitotenv.2021.145943
Article
Google Scholar
Wu TH (1995) Slope stabilization. In: Morgan RPC, Rickson RJ (eds) Slope Stabilization and Erosion Control. E & FN Spon, London, pp 221–264
Google Scholar
Gray DH, Sotir RB (1996) Biotechnical and soil bioengineering slope stabilization: a practical guide for erosion control. Wiley, USA
Wu TH, McKinnell WP III, Swantson DN (1979) Strength of tree roots and landslides on Prince of Wales Island, Alaska. Can Geotech J 16:19–33
Article
Google Scholar
Desai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials with emphasis on geologic materials, 1st edn. Prentice-Hall, Englewood Cliffs, NJ
MATH
Google Scholar
Dyson AP, Tolooiyan A (2018) Optimisation of strength reduction finite element method codes for slope stability analysis. Innov Infrastruct Solut 3:38
Article
Google Scholar
Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Géotechnique 49(3):387–403
Article
Google Scholar
Johnson K, Lemcke P, Karunasena W, Sivakugan N (2006) Modelling the load–deformation response of deep foundations under oblique loading. Environ Model Softw 21:1375–1380. https://doi.org/10.1016/j.envsoft.2005.04.015
Article
Google Scholar
Gasparre A (2005) Advanced laboratory characterisation of London clay. Ph.D. thesis, Imperial College, London
Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17
Article
Google Scholar
Aziz S, Islam MS (2022) Mechanical effect of vetiver grass root for stabilization of natural and terraced hill slope. Geotech Geol Eng. https://doi.org/10.1007/s10706-022-02092-y
Article
Google Scholar
Augarde CE, Lee SJ, Loukidis D (2021) Numerical modelling of large deformation problems in geotechnical engineering: A state-of-the-art review. Soils Found 61(6):1718–1735
Article
Google Scholar
Soga K, Alonso E, Yerro A, Kumar K, Bandara S (2016) Trends in large-deformation analysis of landslide mass movements with particular emphasis on the material point method. Géotechnique 66(3):248–273
Article
Google Scholar
Chok YH, Jaksa MB, Kaggwa WS, Griffiths DV (2015) Assessing the influence of root reinforcement on slope stability by finite elements. Int J Geo-Eng 6(1):1–13. https://doi.org/10.1186/s40703-015-0012-5
Article
Google Scholar
Tsige D, Senadheera S, Talema A (2020) Stability analysis of plant-root-reinforced shallow slopes along mountainous road corridors based on numerical modeling. Geosciences 10(1):19. https://doi.org/10.3390/geosciences10010019
Article
Google Scholar