Skip to main content

Flow Field Measurements Around Isolated, Staggered, and Tandem Piers on a Rigid Bed Channel

Abstract

Experimental investigations are presented on the characterization of flow turbulence and velocity fields around circular piers placed in isolated, tandem, and staggered arrangements in a rigid bed channel with identical flow conditions. Instantaneous velocity measurements are undertaken using a 16 MHz micro down-looking Acoustic Doppler Velocimeter (ADV) at different grid points along the flow depth. The streamline pattern obtained from the velocity fields is presented on vertical planes around the piers. Further, the resultant contours of vortices are plotted for all three types of arrangements, i.e., isolated, tandem, and staggered arrangements, to understand the strength of the vortices around the piers. Apart from the above investigations, the turbulence characteristics such as turbulence intensities, turbulent kinetic energy, velocity power spectra and Reynolds shear stresses at different planes are also presented for all three configurations of piers. The turbulence characteristics are used to identify the influence of one pier over others in the tandem and staggered arrangements compared to that of the isolated piers. The horseshoe vortex system, quantified by its vorticity and strength, is found to be predominant in the staggered configuration. A horseshoe vortex is formed at 0.36d, 0.9d and 0.35d (d is the diameter of the pier) upstream of the isolated pier, front piers of the tandem and front piers of the staggered case, respectively. A zone of recirculation is formed just upstream of the rear pier in the tandem case. The Reynolds shear stresses near the bed, turbulent kinetic energy and turbulence intensities are also found to be quite significant downstream of the front pier in the staggered arrangement compared to those in the isolated and tandem arrangements. The turbulent kinetic energy at the mid-flow depth is found to be 2.5 times higher than that near the bed. The velocity power spectra reveals that the strength of wake vortices is 2.5 times greater for the front piers of the staggered case than that of the tandem front piers with Strouhal numbers, \({S}_{t}\) = 0.26 and 0.112 for the staggered and tandem cases, respectively, near the bed. The present study enhances the understanding of the flow structure around isolated, tandem and staggered bridge piers.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

X :

Streamwise direction

Y :

Transverse direction

Z :

Vertical direction

d :

Diameter of pier (cm)

R e :

Flow Reynolds number

F r :

Froude number

ν :

Kinematic viscosity of the fluid (106 m2/s)

\(\rho\) :

Mass density of water (103 kg/m3)

δ :

Viscous sublayer thickness (mm)

U :

Approaching mean flow velocity (cm/s)

u :

Instantaneous velocity in X- direction (cm/s)

v :

Instantaneous velocity in Y- direction (cm/s)

w :

Instantaneous velocity in Z- direction (cm/s)

u 0 :

Time averaged velocity in X- direction (cm/s)

v 0 :

Time averaged velocity in Y- direction (cm/s)

w 0 :

Time averaged velocity in Z- direction (cm/s)

u :

Fluctuation velocity component in X- direction (cm/s)

v :

Fluctuation velocity component in Y- direction (cm/s)

w :

Fluctuation velocity component in Z- direction (cm/s)

U c :

Critical velocity of the flow (cm/s)

U * :

Shear velocity (cm/s)

Z 0 :

Approach flow depth (cm)

U + :

Non-dimensional time averaged velocity in X- direction

V + :

Non-dimensional time averaged velocity in Y- direction

W + :

Non-dimensional time averaged velocity in Z- direction

\(-\rho \overline{{u }{^{\prime}}{v}{^{\prime}}, } -\rho \overline{{v }{^{\prime}}{w}{^{\prime}}, } -\rho \overline{{u }^{{\prime}}{w}^{{\prime}}}\) :

Reynolds shear stresses (N/m2)

k :

Turbulence kinetic energy (cm2/s2)

f :

Frequency (Hz)

\({S}_{t}\) :

Strouhal number

\(\overrightarrow{V}\) :

Velocity vector

\(\overrightarrow{ds}\) :

Differential displacement vector over a closed curve

\(\overline{\omega }\) :

Vorticity (1/s)

\(\Gamma\) :

Circulation (m2/s)

θ:

Radial planes with respective to flow axis

\(f.{P}_{u}\left(f\right)\) :

Streamwise velocity power spectra (cm2/s2)

\(f.{P}_{v}\left(f\right)\) :

Transverse velocity power spectra (cm2/s2)

\(f.{P}_{w}\left(f\right)\) :

Vertical velocity power spectra (cm2/s2)

a :

Point of separation from pier boundary

A :

Area enclosed between vorticity contours

P :

Centre to centre distance between piers with incident angle α

ADV:

Acoustic Doppler Velocimeter

PIV:

Particle Image Velocimeter

LDV:

Laser Doppler Velocimeter

SNR:

Signal to Noise Ratio

ADVP:

Acoustic Doppler Velocity Profiler

SCADA:

Supervisory control and data acquisition

VFD:

Variable Frequency Drive

PSTD:

Phase Space Threshold De-spiking

References

  1. 1.

    Guan D, Chiew YM, Wei M, Hsieh SC (2019) Characterization of horseshoe vortex in developing scour hole at cylindrical bridge pier. Int J Sedim Res 34(2):118–124. https://doi.org/10.1016/j.ijsrc.2018.07.001

    Article  Google Scholar 

  2. 2.

    Raudkivi AJ (1986) Functional trends of scout at bridge piers. J Hydraul Eng 112(1):1–13. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:1(1)

    Article  Google Scholar 

  3. 3.

    Ettema R, Constantinescu G, Melville B (2017) Flow-filed complexity and design of pier-scour depth: sixty years since Laursen and Toch. J Hydraul Eng 143(9):03117006. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001330

    Article  Google Scholar 

  4. 4.

    Dey S (1995) Three-dimensional vortex flow field around a circular cylinder in a quasi-equilibrium scour hole. Sadhana 20:871–885. https://doi.org/10.1007/BF02745871

    Article  Google Scholar 

  5. 5.

    Apsilidis N, Diplas P, Dancey DL, Bouratsis P (2015) Time-resolved flow dynamics and Reynolds number effects at a wall-cylinder junction. J Fluid Mech 776:475–511. https://doi.org/10.1017/jfm.2015.341

    Article  Google Scholar 

  6. 6.

    Mahjoub SN, Mhiri H, Bournot PH, Palece GL (2008) Experimental and numerical modeling of the three-dimensional incompressible flow behaviour in the near wake of circular cylinders. J Wind Eng Ind Aerodyn 96:471–502. https://doi.org/10.1016/j.jweia.2007.12.001

    Article  Google Scholar 

  7. 7.

    Devenport WJ, Simpson RL (1990) Time dependent and time averaged turbulence structure near the nose of a wing-body junction. J Fluid Mech 210:23–55. https://doi.org/10.1017/S0022112090001215

    Article  Google Scholar 

  8. 8.

    Dey S, Raikar RV (2007) Characteristics of horseshoe vortex in developing scour holes at piers. J Hydraul Eng 133(4):399–413. https://doi.org/10.1061/(ASCE)0733-9429(2007)133:4(399)

    Article  Google Scholar 

  9. 9.

    Kumar A, Kothyari UC (2012) Three-dimensional flow characteristics within the scour hole around circular uniform and compound piers. J Hydraul Eng 138(5):420–429. https://doi.org/10.1061/(ASCE)HY.1943-7900.0000527

    Article  Google Scholar 

  10. 10.

    Graf WH, Yulistiyanto B (1998) Experiments on flow around a cylinder: the velocity and vorticity fields. J Hydraul Res 36(4):637–653. https://doi.org/10.1080/00221689809498613

    Article  Google Scholar 

  11. 11.

    Gautam P, Eldho TI, Mazumder BS, Behera MR (2019) Experimental study of flow and turbulence characteristics around simple and complex piers using PIV. Exp Thermal Fluid Sci 100:193–206. https://doi.org/10.1016/j.expthermflusci.2018.09.010

    Article  Google Scholar 

  12. 12.

    Koken M, Gogus M (2015) Effect of spur dike length on the horseshoe vortex system and the bed shear stress distribution. J Hydraul Res 53(2):196–206. https://doi.org/10.1080/00221686.2014.967819

    Article  Google Scholar 

  13. 13.

    Akbari M, Vaghefi M, Chiew YM (2021) Effect of T-shaped spur dike length on mean flow characteristics along a 180-degree sharp bend. J Hydrol Hydromech 69(1):98–107. https://doi.org/10.2478/johh-2020-0045

    Article  Google Scholar 

  14. 14.

    Ataie-Ashtiani B, Aslani-Kordkandi A (2013) Flow field around single and tandem piers. Flow Turbul Combust 90(3):471–490. https://doi.org/10.1007/s10494-012-9427-7

    Article  MATH  Google Scholar 

  15. 15.

    Keshavarzi A, Ball J, Khabbaz H, Shrestha CK, Zahedani MR (2018) Experimental study of flow structure around two in-line bridge piers. Proc Inst Civ Eng-Water Manag 171(6):311–327. https://doi.org/10.1680/jwama.16.00104

    Article  Google Scholar 

  16. 16.

    Vijayasree BA, Eldho TI, Mazumder BS (2019) Turbulence statistics of flow causing scour around circular and oblong piers. J Hydraul Res 58(4):676–686. https://doi.org/10.1080/00221686.2019.1661292

    Article  Google Scholar 

  17. 17.

    Laxmi Narayana P, Timbadiya PV, Patel PL (2020) Bed level variations around submerged tandem bridge piers in sand beds. ISH J Hydraul Eng. https://doi.org/10.1080/09715010.2020.1723138

    Article  Google Scholar 

  18. 18.

    Raudkivi AJ, Ettema R (1983) Clear-water scour at cylindrical piers. J Hydraul Eng 109(3):338–350. https://doi.org/10.1061/(ASCE)0733-9429(1983)109:3(338)

    Article  Google Scholar 

  19. 19.

    Kothyari UC, Garde RCJ, Ranga Raju KG (1992) Temporal variation of scour around circular bridge piers. J Hydraul Eng 118(8):1091–1106. https://doi.org/10.1061/(ASCE)0733-9429(1992)118:8(1091)

    Article  Google Scholar 

  20. 20.

    Ataie-Ashtiani B, Beheshti AA (2006) Experimental investigation of clear-water local scour at pile groups. J Hydraul Eng 132(10):1100–1104. https://doi.org/10.1061/(ASCE)0733-9429(2006)132:10(1100)

    Article  Google Scholar 

  21. 21.

    Tang HW, Wang H, Liang DF, Lv SQ, Yan L (2013) Incipient motion of sediment in the presence of emergent rigid vegetation. J Hydro-environ Res 7(3):202–208. https://doi.org/10.1016/j.jher.2012.11.002

    Article  Google Scholar 

  22. 22.

    Dey S (2014) Fluvial hydrodynamics: hydrodynamic and sediment transport phenomena. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-19062-9

    Book  Google Scholar 

  23. 23.

    Zhou K, Duan JG, Bombardelli FA (2020) Experimental and theoretical study of local scour around three-pier group. J Hydraul Eng 146(10):04020069. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001794

    Article  Google Scholar 

  24. 24.

    Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  25. 25.

    Sarkar K, Chakraborty C, Mazumder BS (2016) Variations of bed elevations due to turbulence around submerged cylinder in sand beds. Environ Fluid Mech 16(3):659–693. https://doi.org/10.1007/s10652-016-9449-0

    Article  Google Scholar 

  26. 26.

    Sumner D, Richards MD, Akosile OO (2005) Two staggered circular cylinders of equal diameter in cross-flow. J Fluids Struct 20:255–276. https://doi.org/10.1016/j.jfluidstructs.2004.10.006

    Article  Google Scholar 

  27. 27.

    Kraus NC, Lohrmann A, Cabrera R (1994) New acoustic meter for measuring 3D laboratory flows. J Hydraul Eng 120(3):406–412. https://doi.org/10.1061/(ASCE)0733-9429(1994)120:3(406)

    Article  Google Scholar 

  28. 28.

    Voulgaris G, Trowbridge JH (1998) Evaluation of the Acoustic Doppler Velocimeter (ADV) for turbulence measurements. J Atmos Oceanic Tech 15(1):272–289. https://doi.org/10.1175/1520-0426(1998)015%3c0272:EOTADV%3e2.0.CO;2

    Article  Google Scholar 

  29. 29.

    Sarker MA (1998) Flow measurement around scoured bridge piers using Acoustic Doppler Velocimeter (ADV). Flow Meas Instrum 9:217–227. https://doi.org/10.1016/S0955-5986(98)00028-4

    Article  Google Scholar 

  30. 30.

    Nikora V, Goring D (2000) Flow turbulence over fixed and weakly mobile gravel beds. J Hydraul Eng 126(9):679–690. https://doi.org/10.1061/(ASCE)0733-9429(2000)126:9(679)

    Article  Google Scholar 

  31. 31.

    Goring G, Nikora V (2002) Despiking acoustic Doppler velocimeter data. J Hydraul Eng 128(1):117–126. https://doi.org/10.1061/(ASCE)0733-9429(2002)128:1(117)

    Article  Google Scholar 

  32. 32.

    Barman B, Kumar B, Sarma AK (2019) Impact of Sand mining on alluvial channel flow characteristics. Ecol Eng 135:36–44. https://doi.org/10.1016/j.ecoleng.2019.05.013

    Article  Google Scholar 

  33. 33.

    Sarkar K, Chakraborty C, Mazumder BS (2015) Space-time dynamics of bed forms due to turbulence around submerged bridge piers. Stoch Env Res Risk Assess 29(3):995–1017. https://doi.org/10.1007/s00477-014-0961-9

    Article  Google Scholar 

  34. 34.

    Singh A, Porté-Agel F, Foufoula-Georgiou E (2010) On the influence of gravel bed dynamics on velocity power spectra. Water Resour Res 46(4):W04509. https://doi.org/10.1029/2009WR008190

    Article  Google Scholar 

  35. 35.

    Nezu I, Rodi W (1986) Open-channel flow measurements with a laser Doppler anemometer. J Hydraul Eng 112(5):335–355. https://doi.org/10.1061/(ASCE)0733-9429(1986)112:5(335)

    Article  Google Scholar 

  36. 36.

    Jing S, Yang W, Chen Y (2019) Smooth open channel with increasing aspect ratio: influence on secondary flow. Water 11(9):1872. https://doi.org/10.3390/w11091872

    Article  Google Scholar 

  37. 37.

    Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, Cambridge

    Google Scholar 

  38. 38.

    Baker CJ (1980) The turbulent horseshoe vortex. J Wind Eng Ind Aerodyn 6(1–2):9–23. https://doi.org/10.1016/0167-6105(80)90018-5

    Article  Google Scholar 

Download references

Acknowledgements

Authors are thankful to the Centre of Excellence (CoE) on “Water Resources and Flood Management”, of SVNIT Surat funded under TEQIP-II, Ministry of Education (MoE), Government of India, necessary infrastructure support for conducting the experiments. The authors are thankful to the Editor, Associate Editor and anonymous Reviewers for their constructive comments and suggestions which improved the readability of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Prafulkumar Vashrambhai Timbadiya.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 76044 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pasupuleti, L.N., Timbadiya, P.V. & Patel, P.L. Flow Field Measurements Around Isolated, Staggered, and Tandem Piers on a Rigid Bed Channel. Int J Civ Eng (2021). https://doi.org/10.1007/s40999-021-00678-w

Download citation

Keywords

  • Tandem and staggered piers
  • ADV
  • Vorticity
  • Velocity power spectra
  • Vortex shedding