Skip to main content

The Effect of Chloride Ions on the Resistance of Concretes Containing Aerogel Under Sodium Sulfate Attack

Abstract

An experimental study was conducted to evaluate the damage progress of concretes containing aerogel powders subjected to sodium sulfate (\({\mathrm{Na}}_{2}{\mathrm{SO}}_{4}\)) and combination of sodium sulfate and sodium chloride (\(\mathrm{NaCl})\) attack under wetting–drying cycles. The amount of aerogel was considered at levels of 0.0, 1.75, 3.5, 5.25, and 7.0% of the concrete volume. The mechanical and physical properties of the concretes as well as the compressive strength and weight changes, and electrical resistivity were measured under the corrosive environments up to 12 months of exposure. Results indicated that the use of 1.75% aerogel improves the mechanical and physical properties of the concrete. However, these properties declined by further increase of aerogel percentage. Also, the aerogel usage up to 5.25% can increase the durability of concretes under sulfate attack. Furthermore, the presence of chloride ions reduces the concrete deterioration under the sulfate attack, but it increases the probability of steel corrosion in the sulfate environment.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Data availability

All data used during the study appeared in the published article.

References

  1. 1.

    Pradhan B (2014) Corrosion behavior of steel reinforcement in concrete exposed to composite chloride-sulfate environment. Constr Build Mater 72:398–410. https://doi.org/10.1016/j.conbuildmat.2014.09.026

    Article  Google Scholar 

  2. 2.

    Monteiro PJM, Kurtis KE (2003) Time to failure for concrete exposed to severe sulfate attack. Cem Concr Res 33(7):987–993. https://doi.org/10.1016/S0008-8846(02)01097-9

    Article  Google Scholar 

  3. 3.

    Bader MA (2003) Performance of concrete in a coastal environment. Cem Concr Compos 25:539–548. https://doi.org/10.1016/S0958-9465(02)00093-8

    Article  Google Scholar 

  4. 4.

    Santhanam M, Cohen M, Olek J (2006) Differentiating seawater and groundwater sulfate attack in Portland cement mortars. Cem Concr Res 36(12):2132–2137. https://doi.org/10.1016/j.cemconres.2006.09.011

    Article  Google Scholar 

  5. 5.

    Loudon N (2003) A review of the experience of thaumasite sulfate attack by the UK Highways Agency. Cem Concr Compos 25(8):1051–1058. https://doi.org/10.1016/S0958-9465(03)00146-X

    Article  Google Scholar 

  6. 6.

    Zhao G, Li J, Shao W (2018) Effect of mixed chlorides on the degradation and sulfate diffusion of cast-in-situ concrete due to sulfate attack. Constr Build Mater 181:49–58. https://doi.org/10.1016/j.conbuildmat.2018.05.251

    Article  Google Scholar 

  7. 7.

    Chen Y, Gao J, Tang L, Li X (2016) Resistance of concrete against combined attack of chloride and sulfate under drying-wetting cycles. Constr Build Mater 106:650–658. https://doi.org/10.1016/j.conbuildmat.2015.12.151

    Article  Google Scholar 

  8. 8.

    Honglei C, Zuquan J, Tiejun Z, Benzhen W, Zhe L, Jian L (2020) Capillary suction induced water absorption and chloride transport in non-saturated concrete: the influence of humidity, mineral admixtures and sulfate ions. Constr Build Mater 236:117581. https://doi.org/10.1016/j.conbuildmat.2019.117581

    Article  Google Scholar 

  9. 9.

    Chen F, Gao J, Qi B, Shen D, Li L (2017) Degradation progress of concrete subject to combined sulfate-chloride attack under drying-wetting cycles and flexural loading. Constr Build Mater 151:164–171. https://doi.org/10.1016/j.conbuildmat.2017.06.074

    Article  Google Scholar 

  10. 10.

    Macphee DE, Barnett SJ (2004) Solution properties of solids in the ettringite-thaumasite solid solution series. Cem Concr Res 34(9):1591–1598. https://doi.org/10.1016/j.cemconres.2004.02.022

    Article  Google Scholar 

  11. 11.

    Brown PW (2002) Thaumasite formation and other forms of sulfate attack. Cem Concr Compos 24:301–303. https://doi.org/10.1016/S0958-9465(01)00081-6

    Article  Google Scholar 

  12. 12.

    Zhang M, Chen J, Lv Y, Wang D, Ye J (2013) Study on the expansion of concrete under attack of sulfate and sulfate-chloride ions. Constr Build Mater 39:26–32. https://doi.org/10.1016/j.conbuildmat.2012.05.003

    Article  Google Scholar 

  13. 13.

    Yang Z et al (2019) The influence of sodium sulfate and magnesium sulfate on the stability of bound chlorides in cement paste. Constr Build Mater 228:116775. https://doi.org/10.1016/j.conbuildmat.2019.116775

    Article  Google Scholar 

  14. 14.

    Irassar EF, Di Manio A, Batic OA (1996) sulfate attack on concrete with mineral admixtures. Cem Concr Res 26(1):113–123. https://doi.org/10.1016/0008-8846(95)00195-6

    Article  Google Scholar 

  15. 15.

    Xu F, Yang Z, Liu W, Wang S, Zhang H (2020) Experimental investigation on the effect of sulfate attack on chloride diffusivity of cracked concrete subjected to composite solution. Constr Build Mater 237:117643. https://doi.org/10.1016/j.conbuildmat.2019.117643

    Article  Google Scholar 

  16. 16.

    Das JK, Pradhan B (2020) Long term effect of corrosion inhibitor and associated cation type of chloride ions on chloride profile of concrete exposed to composite chloride-sulfate environment. Mater Today Proc 32:803–809. https://doi.org/10.1016/j.matpr.2020.04.014

    Article  Google Scholar 

  17. 17.

    Wang J, Cai G, Wu Q (2018) Basic mechanical behaviours and deterioration mechanism of RC beams under chloride-sulphate environment. Constr Build Mater 160:450–461. https://doi.org/10.1016/j.conbuildmat.2017.11.092

    Article  Google Scholar 

  18. 18.

    Zuquan J, Wei S, Yunsheng Z, Jinyang J, Jianzhong L (2007) Interaction between sulfate and chloride solution attack of concretes with and without fly ash. Cem Concr Res 37(8):1223–1232. https://doi.org/10.1016/j.cemconres.2007.02.016

    Article  Google Scholar 

  19. 19.

    Jarrah NR, Al-amoudi OSB, Ashiru OA, Al-mana A (1995) Electrochemical behavior of steel in plain and blended cement. Constr Build Mater 9(2):97–103. https://doi.org/10.1016/0950-0618(95)00002-W

    Article  Google Scholar 

  20. 20.

    Yin R, Zhang C, Wu Q, Li B, Xie H (2018) Damage on lining concrete in highway tunnels under combined sulfate and chloride attack. Front Struct Civ Eng 12(3):331–340. https://doi.org/10.1007/s11709-017-0421-y

    Article  Google Scholar 

  21. 21.

    Li G, Zhang A, Song Z, Liu S, Zhang J (2018) Ground granulated blast furnace slag effect on the durability of ternary cementitious system exposed to combined attack of chloride and sulfate. Constr Build Mater 158:640–648. https://doi.org/10.1016/j.conbuildmat.2017.10.062

    Article  Google Scholar 

  22. 22.

    Maslehuddin M, Page CL, Rasheeduzzafar (1997) Temperature effect on the pore solution chemistry in contaminated cements. Mag Concr Res 48(5):5–14. https://doi.org/10.1680/macr.1997.49.178.5

    Article  Google Scholar 

  23. 23.

    Maes M, De Belie N (2014) Resistance of concrete and mortar against combined attack of chloride and sodium sulphate. Cem Concr Compos 53:59–72. https://doi.org/10.1016/j.cemconcomp.2014.06.013

    Article  Google Scholar 

  24. 24.

    Sotiriadis K, Nikolopoulou E, Tsivilis S (2012) Sulfate resistance of limestone cement concrete exposed to combined chloride and sulfate environment at low temperature. Cem Concr Compos 34(8):903–910. https://doi.org/10.1016/j.cemconcomp.2012.05.006

    Article  Google Scholar 

  25. 25.

    Zhao G, Li J, Shi M, Cui J, Xie F (2020) Degradation of cast-in-situ concrete subjected to sulphate-chloride combined attack. Constr Build Mater 241:117995. https://doi.org/10.1016/j.conbuildmat.2019.117995

    Article  Google Scholar 

  26. 26.

    Medeiros-Junior RA, Gans PS, Pereira E, Pereira E (2019) Electrical resistivity of concrete exposed to chlorides and sulfates. ACI Mater J 116(3):119–130

    Google Scholar 

  27. 27.

    Jiang L, Niu D (2016) Study of deterioration of concrete exposed to different types of sulfate solutions under drying-wetting cycles. Constr Build Mater 117:88–98. https://doi.org/10.1016/j.conbuildmat.2016.04.094

    Article  Google Scholar 

  28. 28.

    Fickler S, Milow B, Ratke L, Schnellenbach-held M, Welsch T (2015) Development of high performance aerogel concrete. Energy Proc 78:406–411. https://doi.org/10.1016/j.egypro.2015.11.684

    Article  Google Scholar 

  29. 29.

    Ng S, Petter B, Ingunn L, Sandberg C, Gao T, Haralds Ó (2015) Experimental investigations of aerogel-incorporated ultra-high performance concrete. Constr Build Mater 77:307–316. https://doi.org/10.1016/j.conbuildmat.2014.12.064

    Article  Google Scholar 

  30. 30.

    Gao T, Jelle BP, Gustavsen A, Jacobsen S (2014) Aerogel-incorporated concrete: an experimental study. Constr Build Mater 52:130–136. https://doi.org/10.1016/j.conbuildmat.2013.10.100

    Article  Google Scholar 

  31. 31.

    Pierre AC, Rigacci A (2011). In: Aegerter M, Leventis N, Koebel M (eds) Aerogels handbook. Advances in sol–gel derived materials and technologies, Springer, New York, pp 21–45

    Chapter  Google Scholar 

  32. 32.

    Pierre AC, Pajonk GM (2002) Chemistry of aerogels and their applications. Chem Rev 102:4243–4265. https://doi.org/10.1021/cr0101306

    Article  Google Scholar 

  33. 33.

    Zhang H, Yang J, Wu H, Fu P, Liu Y, Yang W (2020) Dynamic thermal performance of ultra-light and thermal-insulative aerogel foamed concrete for building energy efficiency. Sol Energy 204:569–576. https://doi.org/10.1016/j.solener.2020.04.092

    Article  Google Scholar 

  34. 34.

    Li P, Wu H, Liu Y, Yang J, Fang Z, Lin B (2019) Preparation and optimization of ultra-light and thermal insulative aerogel foam concrete. Constr Build Mater 205:529–542. https://doi.org/10.1016/j.conbuildmat.2019.01.212

    Article  Google Scholar 

  35. 35.

    ASTM C127-15 (2015) Standard test method for relative density (Specific Gravity) and absorption of coarse aggregate, ASTM International, West Conshohocken, PA

  36. 36.

    ASTM C128-15 (2015) Standard test method for relative density (Specific Gravity) and absorption of fine aggregate, ASTM International, West Conshohocken, PA

  37. 37.

    Building and Housing Research Center (2008) The national method for concrete mix design, BHRC publication, No. S-479

  38. 38.

    ACI 211.1-91 (2002) Standard practice for selecting proportions for normal, heavyweight, and mass concrete. American Concrete Institute, Detroit

    Google Scholar 

  39. 39.

    ACI 31R-19 (2019) Building Code Requirements for Structural Concrete. American Concrete Institute, Detroit

    Google Scholar 

  40. 40.

    BS 1881-118 (1983) Testing concrete-method for determination of compressive strength of concrete cubes. British Standard Institution

  41. 41.

    BS 1881-122 (1983) Testing concrete-method for determination of water absorption. British Standard Institution

  42. 42.

    Mendes SES, Oliveira RLN, Cremonez C, Pereira E, Pereira E, Medeiros-Junior RA (2018) Electrical resistivity as a durability parameter for concrete design: Experimental data versus estimation by mathematical model. Constr Build Mater 192:610–620. https://doi.org/10.1016/j.conbuildmat.2018.10.145

    Article  Google Scholar 

  43. 43.

    ACI (2019) Guide to protection of reinforcing steel in concrete against corrosion. American Concrete Institute, Detroit

    Google Scholar 

  44. 44.

    Alonso C, Andrade C, González JA (1988) Relation between resistivity and corrosion rate of reinforcements in carbonated mortar made with several cement types. Cem Concr Res 18(5):687–698. https://doi.org/10.1016/0008-8846(88)90091-9

    Article  Google Scholar 

  45. 45.

    Strzałkowski J, Garbalinska H (2016) Thermal and strength properties of lightweight concretes with the addition of aerogel particles. Adv Cem Res 28(9):567–575. https://doi.org/10.1680/jadcr.16.00032

    Article  Google Scholar 

  46. 46.

    Adhikary SK, Rudžionis Ž, Vaičiukynienė D (2020) Development of flowable ultra-lightweight concrete using expanded glass aggregate, silica aerogel, and prefabricated plastic bubbles. J Build Eng 31:1–10. https://doi.org/10.1016/j.jobe.2020.101399

    Article  Google Scholar 

  47. 47.

    Gao T, Petter B, Gustavsen A, Jacobsen S (2014) Aerogel-incorporated concrete: an experimental study. Constr Build Mater 52:130–136. https://doi.org/10.1016/j.conbuildmat.2013.10.100

    Article  Google Scholar 

  48. 48.

    Yoon HS, Lim TK, Jeong SM, Yang KH (2020) Thermal transfer and moisture resistances of nano-aerogel-embedded foam concrete. Constr Build Mater 236:117575. https://doi.org/10.1016/j.conbuildmat.2019.117575

    Article  Google Scholar 

  49. 49.

    Shah SN, Mo KH, Yap SP, Radwan MKH (2021) Effect of micro-sized silica aerogel on the properties of light weight cement composite. Constr Build Mater 290:123229. https://doi.org/10.1016/j.conbuildmat.2021.123229

    Article  Google Scholar 

  50. 50.

    McCarter WJ, Ezirim H, Emerson M (1992) Absorption of water and chloride into concrete. Mag Concr Res 44(158):31–37. https://doi.org/10.1680/macr.1992.44.158.31

    Article  Google Scholar 

  51. 51.

    Whittington HW, McCarter J, Forde MC (1981) The conduction of electricity through concrete. Mag Concr Res 33(114):48–60. https://doi.org/10.1680/macr.1981.33.114.48

    Article  Google Scholar 

  52. 52.

    Koleva DA, Copuroglu O, van Breugel K, Ye G, de Wit JHW (2008) Electrical resistivity and microstructural properties of concrete materials in conditions of current flow. Cem Concr Compos 30(8):731–744. https://doi.org/10.1016/j.cemconcomp.2008.04.001

    Article  Google Scholar 

  53. 53.

    Zhang D, Cao Z, Fan L, Liu S, Liu W (2014) Evaluation of the influence of salt concentration on cement stabilized clay by electrical resistivity measurement method. Eng Geol 170:80–88. https://doi.org/10.1016/j.enggeo.2013.12.010

    Article  Google Scholar 

  54. 54.

    Neville A (2004) The confused world of sulfate attack on concrete. Cem Concr Res 34(8):1275–1296. https://doi.org/10.1016/j.cemconres.2004.04.004

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Contributions

MS: Investigation, resources, data curation, and writing. HR: Conceptualization, methodology, supervision, and review and editing.

Corresponding author

Correspondence to Hamid Rahmani.

Ethics declarations

Conflict of interest

There is no competing financial interest or personal relationships that could have appeared to influence the work reported in this paper.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soleimanirad, M., Rahmani, H. The Effect of Chloride Ions on the Resistance of Concretes Containing Aerogel Under Sodium Sulfate Attack. Int J Civ Eng (2021). https://doi.org/10.1007/s40999-021-00671-3

Download citation

Keywords

  • Concrete
  • Aerogel
  • Sulfate attack
  • Chloride
  • Strength
  • Absorption
  • Electrical resistivity