Skip to main content

Evaluation of Using Different Nanomaterials to Stabilize the Collapsible Loessial Soil

Abstract

Construction over problematic soils is a common problem in many parts of the world, and one of the effective procedures to tackle this problem is soil stabilization. Accordingly, the current study provides the finding of a laboratory investigation into the effect of three kinds of nanomaterials, including nano-silica (NS), nano-clay (NC) and nano-calcium carbonate (NCC) on the properties of a loessial collapsible soil. To accomplish this issue, reconstituted samples of the stabilized loessial soil were prepared for unconfined compression and consolidation tests. The results illustrated that an insignificant amount of nanomaterials (less than 1% of the total dry weight of the soil when is used in as a liquid prepared solution) could considerably improve the mechanical behavior of the soil. The values of additives which gave the maximum unconfined compressive strength (UCS) were determined to be 0.1, 0.2, and 0.4% of the total dry weight of the soil, respectively, for NS, NCC, and NC. The most efficient improvement was the stabilized sample with 0.2% NCC which resulted in the highest UCS after 28 days of curing. In addition, the results of consolidation tests showed that the degree of collapse potential (CP) of the tested stabilized loess improved from moderately severe for unstabilized soil to moderate for all of the stabilized soils with different stabilizing agents. Hence, stabilization using these nanomaterials could partially improve the collapse potential of the tested loessial soil.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Rogers C (1995) Types and distribution of collapsible soils. Genesis and properties of collapsible soils. Springer, Berlin, pp 1–17. https://doi.org/10.1007/978-94-011-0097-7_1

    Book  Google Scholar 

  2. 2.

    El Howayek A, Huang P-T, Bisnett R, Santagata MC (2011) Identification and behavior of collapsible soils. Publication FHWA/IN/JTRP-2011/12. Joint Transportation Research Program, Indiana Department of Transportation and Purdue University, West Lafayette, IN. https://doi.org/10.5703/1288284314625

  3. 3.

    Phien-Wej N, Pientong T, Balasubramaniam A (1992) Collapse and strength characteristics of loess in Thailand. Eng Geol 32(1–2):59–72. https://doi.org/10.1016/0013-7952(92)90018-T

    Article  Google Scholar 

  4. 4.

    Rogers C, Dijkstra T, Smalley I (1994) Hydroconsolidation and subsidence of loess: studies from China, Russia, North America and Europe: in memory of Jan Sajgalik. Eng Geol 37(2):83–113. https://doi.org/10.1016/0013-7952(94)90045-0

    Article  Google Scholar 

  5. 5.

    Al-Rawas AA (2000) State-of-the-art-review of collapsible soils. Sultan Qaboos Univ J Sci 5:115–135. https://doi.org/10.24200/squjs.vol5iss0pp115-135

    Article  Google Scholar 

  6. 6.

    Nouaouria M, Guenfoud M, Lafifi B (2008) Engineering properties of loess in Algeria. Eng Geol 99(1–2):85–90. https://doi.org/10.1016/j.enggeo.2008.01.013

    Article  Google Scholar 

  7. 7.

    Ryashchenko T, Akulova V, Erbaeva M (2008) Loessial soils of Priangaria, Transbaikalia, Mongolia, and northwestern China. Quatern Int 179(1):90–95. https://doi.org/10.1016/j.quaint.2007.06.035

    Article  Google Scholar 

  8. 8.

    Gaaver KE (2012) Geotechnical properties of Egyptian collapsible soils. Alexandria Eng J 51(3):205–210. https://doi.org/10.1016/j.aej.2012.05.002

    Article  Google Scholar 

  9. 9.

    Frechen M, Kehl M, Rolf C, Sarvati R, Skowronek A (2009) Loess chronology of the Caspian lowland in northern Iran. Quatern Int 198(1–2):220–233. https://doi.org/10.1016/j.quaint.2008.12.012

    Article  Google Scholar 

  10. 10.

    Haeri SM, Zamani A, Garakani AA (2012) Collapse potential and permeability of undisturbed and remolded loessial soil samples. Unsaturated soils: research and applications. Springer, Berlin, pp 301–308. https://doi.org/10.1007/978-3-642-31116-1_41

    Book  Google Scholar 

  11. 11.

    Feda J (1988) Collapse of loess upon wetting. Eng Geol 25(2–4):263–269. https://doi.org/10.1016/0013-7952(88)90031-2

    Article  Google Scholar 

  12. 12.

    Houston SL, Houston WN, Spadola DJ (1988) Prediction of field collapse of soils due to wetting. J Geotech Eng 114(1):40–58. https://doi.org/10.1061/(ASCE)0733-9410(1988)114:1(40)

    Article  Google Scholar 

  13. 13.

    Lommler JC, Bandini P (2015) Characterization of collapsible soils. IFCEE 2015:1834–1841

    Google Scholar 

  14. 14.

    Barden L, McGown A, Collins K (1973) The collapse mechanism in partly saturated soil. Eng Geol 7(1):49–60. https://doi.org/10.1016/0013-7952(73)90006-9

    Article  Google Scholar 

  15. 15.

    Li P, Vanapalli S, Li T (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech Eng 8(2):256–274. https://doi.org/10.1016/j.jrmge.2015.12.002

    Article  Google Scholar 

  16. 16.

    Haeri SM, Garakani AA, Khosravi A, Meehan CL (2014) Assessing the hydro-mechanical behavior of collapsible soils using a modified triaxial test device. Geotech Test J 37(2):190–204. https://doi.org/10.1520/GTJ20130034

    Article  Google Scholar 

  17. 17.

    Garakani AA, Haeri SM, Khosravi A, Habibagahi G (2015) Hydro-mechanical behavior of undisturbed collapsible loessial soils under different stress state conditions. Eng Geol 195:28–41. https://doi.org/10.1016/j.enggeo.2015.05.026

    Article  Google Scholar 

  18. 18.

    Haeri SM (2016) Hydro-mechanical behavior of collapsible soils in unsaturated soil mechanics context. Jpn Geotech Soc Spec Publ 2(1):25–40. https://doi.org/10.3208/jgssp.KL-3

    Article  Google Scholar 

  19. 19.

    Rodrigues RA, Vilar OM (2011) Experimental study of the collapsible behavior of a tropical unsaturated soil. In: Alonso E, Gens A (eds) Proceedings of the 5th international conference in unsaturated soils. Taylor & Francis, pp 353–357

  20. 20.

    Derbyshire E (2001) Geological hazards in loess terrain, with particular reference to the loess regions of China. Earth Sci Rev 54(1–3):231–260. https://doi.org/10.1016/S0012-8252(01)00050-2

    Article  Google Scholar 

  21. 21.

    Houston SL, Houston WN, Zapata CE, Lawrence C (2001) Geotechnical engineering practice for collapsible soils. Unsaturated soil concepts and their application in geotechnical practice. Springer, Berlin, pp 333–355. https://doi.org/10.1007/978-94-015-9775-3_6

    Book  Google Scholar 

  22. 22.

    Peng J, Sun P, Li X (2006) Ground fissure: the major geological and environmental problem in the development of Xi’an city. China Environ Sci Technol 2:469–474

    Google Scholar 

  23. 23.

    Sun P, Zhang M, Zhu L, Xue Q, Hu W (2013) Typical case study of loess collapse and discussion on related problems. Geol Bull China 32(6):847–851

    Google Scholar 

  24. 24.

    Minkov M, Evstatiev D, Karachorov P, Slavov P, Stefanoff G, Jelev J (1981) Stresses and deformations in stabilized loess. In: Proc. 10th ICSMFE, Stockholm, vol 2, pp 193–197

  25. 25.

    Evstatiev D (1988) Loess improvement methods. Eng Geol 25(2–4):341–366. https://doi.org/10.1016/0013-7952(88)90036-1

    Article  Google Scholar 

  26. 26.

    Jefferson I, Rogers C (2012) Collapsible soils. In: Proceedings of ICE Manual of Geotechnical Engineering. ICE Publishing, London, pp 391–411

  27. 27.

    Minkov M, Evstatiev D, Donchev P (1980) Dynamic compaction of loess. In: Proceedings of the international conference on compaction, pp 345–349

  28. 28.

    Rollins KM, Jorgensen SJ, Ross TE (1998) Optimum moisture content for dynamic compaction of collapsible soils. J Geotech Geoenviron Eng 124(8):699–708. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:8(699)

    Article  Google Scholar 

  29. 29.

    Ali NA (2015) Performance of partially replaced collapsible soil–field study. Alexandria Eng J 54(3):527–532. https://doi.org/10.1016/j.aej.2015.05.002

    Article  Google Scholar 

  30. 30.

    Rollins KM, Kim J (2010) Dynamic compaction of collapsible soils based on US case histories. J Geotech Geoenviron Eng 136(9):1178–1186. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000331

    Article  Google Scholar 

  31. 31.

    Ayadat T, Hanna A (2005) Encapsulated stone columns as a soil improvement technique for collapsible soil. Proc Inst Civ Engineers-Ground Improve 9(4):137–147. https://doi.org/10.1680/grim.2005.9.4.137

    Article  Google Scholar 

  32. 32.

    FattahAl-Musawi MYHH, Salman FA (2012) Treatment of collapsibility of gypseous soils by dynamic compaction. Geotech Geol Eng 30(6):1369–1387. https://doi.org/10.1007/s10706-012-9552-z

    Article  Google Scholar 

  33. 33.

    Ziaie_moayed R, Kamalzareh M (2015) Improving physical characteristics of collapsible soil (case study: Tehran-Semnan railroad). J Eng Geol 9 (2):2869–2890. https://jeg.khu.ac.ir/article-1-1715-en.html

  34. 34.

    Haeri S, Garakani AA, Khorshidi M (2012) Retrofitting of collapsible basement of water conveying Canals by lime mixing. In: Annual international conference on geological and earth science (GEOS 2012), Singapore. https://doi.org/10.13140/RG.2.1.3687.0887

  35. 35.

    Fagundes LP, Yacoub JD, Lima AC, Nakatsuchi FR, Lollo JA, Akasaki JL, Tashima MM (2016) Improvement of collapsible soil behavior of a lateritic soil using rice husk ash. Key Eng Mater Trans Tech Publ 668:290–296. https://doi.org/10.4028/www.scientific.net/KEM.668.290

    Article  Google Scholar 

  36. 36.

    Haeri SM, Mohammad Hosseini A, Shahrabi MM, Soleymani S (2015) Comparison of strength characteristics of Gorgan loessial soil improved by nanosilica, lime and Portland cement. In: 15th Pan American Conference on Soil Mechanics and Geotechnical Engineering

  37. 37.

    Al-Janabi A (2014) Hydro-mechanical analysis of unsaturated collapsible soils and their stabilization. In: Dissertation, Kiel University

  38. 38.

    Arabani M, Lasaki BA (2017) Behavior of a simulated collapsible soil modified with XPS-cement mixtures. Geotech Geol Eng 35(1):137–155. https://doi.org/10.1007/s10706-016-0092-9

    Article  Google Scholar 

  39. 39.

    Okonta FN, Manciya T (2010) Compaction and strength of lime–Fly ash stabilized collapsible residual sand. Electron J Geotech Eng 15:1976–1988

    Google Scholar 

  40. 40.

    Jefferson I, Evstatiev D, Karastanev D (2008) The treatment of collapsible loess soils using cement materials. In: GeoCongress 2008: Geosustainability and Geohazard Mitigation. pp 662–669. https://doi.org/10.1061/40971(310)82

  41. 41.

    Zhang F, Pei X, Yan X (2018) Physicochemical and mechanical properties of lime-treated loess. Geotech Geol Eng 36(1):685–696. https://doi.org/10.1007/s10706-017-0341-6

    Article  Google Scholar 

  42. 42.

    Hosseini A, Haeri SM, Mahvelati S, Fathi A (2019) Feasibility of using electrokinetics and nanomaterials to stabilize and improve collapsible soils. J Rock Mech Geotech Eng 11(5):1055–1065. https://doi.org/10.1016/j.jrmge.2019.06.004

    Article  Google Scholar 

  43. 43.

    Haeri SM, Akbari Garakani A, Roohparvar HR, Desai CS, Seyed Ghafouri SMH, Salemi Kouchesfahani K (2019) Testing and constitutive modeling of lime-stabilized collapsible loess. I. Experimental investigations. Int J Geomech 19(4):04019006. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001364

    Article  Google Scholar 

  44. 44.

    Metelková Z, Boháč J, Přikryl R, Sedlářová I (2012) Maturation of loess treated with variable lime admixture: pore space textural evolution and related phase changes. Appl Clay Sci 61:37–43. https://doi.org/10.1016/j.clay.2012.03.008

    Article  Google Scholar 

  45. 45.

    Zia N, Fox PJ (2000) Engineering properties of loess-fly ash mixtures for roadbase construction. Transp Res Rec 1714(1):49–56. https://doi.org/10.3141/1714-07

    Article  Google Scholar 

  46. 46.

    Holister P, Weener J-W, Román C, Harper T (2003) Nanoparticles. Technol White Pap 3:1–11

    Google Scholar 

  47. 47.

    Taha MR (2018) Recent developments in nanomaterials for geotechnical and geoenvironmental engineering. In: MATEC Web of Conferences, EDP Sciences, p 02004. https://doi.org/10.1051/matecconf/201814902004

  48. 48.

    Govindasamy P, Taha MR, Alsharef J, Ramalingam K (2017) Influence of nanolime and curing period on unconfined compressive strength of soil. Appl Environ Soil Sci. https://doi.org/10.1155/2017/8307493

    Article  Google Scholar 

  49. 49.

    Bahmani SH, Huat BB, Asadi A, Farzadnia N (2014) Stabilization of residual soil using SiO2 nanoparticles and cement. Constr Build Mater 64:350–359. https://doi.org/10.1016/j.conbuildmat.2014.04.086

    Article  Google Scholar 

  50. 50.

    Changizi F, Haddad A (2016) Effect of nano-SiO2 on the geotechnical properties of cohesive soil. Geotech Geol Eng 34(2):725–733. https://doi.org/10.1007/s10706-015-9962-9

    Article  Google Scholar 

  51. 51.

    Taha MR, Alsharef J, Al-Mansob RA, Khan TA (2018) Effects of nano-carbon reinforcement on the swelling and shrinkage behaviour of soil. Sains Malay 47(1):195–205. https://doi.org/10.17576/jsm-2018-4701-23

    Article  Google Scholar 

  52. 52.

    Yonekura R, Miwa M (1993) Fundamental properties of sodium silicate-based grout. In: Proceedings of the 11th Southeast Asia geotechnical conference, Singapore. vol 439, p e44

  53. 53.

    Kong R, Zhang F, Wang G, Peng J (2018) Stabilization of loess using nano-SiO2. Materials 11(6):1014. https://doi.org/10.3390/ma11061014

    Article  Google Scholar 

  54. 54.

    Mohammadi M, Niazian M (2013) Investigation of nano-clay effect on geotechnical properties of Rasht clay. Int J Adv Sci Tech Res 3(3):37–46

    Google Scholar 

  55. 55.

    Tabarsa A, Latifi N, Meehan CL, Manahiloh KN (2018) Laboratory investigation and field evaluation of loess improvement using nanoclay—a sustainable material for construction. Constr Build Mater 158:454–463. https://doi.org/10.1016/j.conbuildmat.2017.09.096

    Article  Google Scholar 

  56. 56.

    Alsharef J, Taha MR, Firoozi AA, Govindasamy P (2016) Potential of using nanocarbons to stabilize weak soils. Appl Environ Soil Sci. https://doi.org/10.1155/2016/5060531

    Article  Google Scholar 

  57. 57.

    Gelsefidi S, Alireza S, Mohammad MS, Hasan BM (2013) Application of nanomaterial to stabilize a weak soil. In: Int Conf case Hist Geotech Eng-seventh

  58. 58.

    Choobbasti AJ, Samakoosh MA, Kutanaei SS (2019) Mechanical properties soil stabilized with nano calcium carbonate and reinforced with carpet waste fibers. Constr Build Mater 211:1094–1104. https://doi.org/10.1016/j.conbuildmat.2019.03.306

    Article  Google Scholar 

  59. 59.

    Taha MR, Taha OME (2012) Influence of nano-material on the expansive and shrinkage soil behavior. J Nanopart Res 14(10):1190. https://doi.org/10.1007/s11051-012-1190-0

    Article  Google Scholar 

  60. 60.

    Ghorbani A, Hasanzadehshooiili H, Mohammadi M, Sianati F, Salimi M, Sadowski L, Szymanowski J (2019) Effect of selected nanospheres on the mechanical strength of lime-stabilized high-plasticity clay soils. Adv Civ Eng. https://doi.org/10.1155/2019/4257530

    Article  Google Scholar 

  61. 61.

    Emmanuel E, Lau CC, Anggraini V, Pasbakhsh P (2019) Stabilization of a soft marine clay using halloysite nanotubes: a multi-scale approach. Appl Clay Sci 173:65–78. https://doi.org/10.1016/j.clay.2019.03.014

    Article  Google Scholar 

  62. 62.

    Valishzadeh A (2017) Stabilization of collapsible soil with nano-material and injection using electrokinetic procedure, case study: Gorgan Loess. Dissertation, Sharif University of Technology

  63. 63.

    Kim J-K, Lawler DF (2005) Characteristics of zeta potential distribution in silica particles. Bull Korean Chem Soc 26(7):1083–1089. https://doi.org/10.5012/bkcs.2005.26.7.1083

    Article  Google Scholar 

  64. 64.

    Hunter RJ (2001) Foundations of colloid science. Oxford University Press, Oxford

    Google Scholar 

  65. 65.

    Leroy P, Devau N, Revil A, Bizi M (2013) Influence of surface conductivity on the apparent zeta potential of amorphous silica nanoparticles. J Colloid Interface Sci 410:81–93. https://doi.org/10.1016/j.jcis.2013.08.012

    Article  Google Scholar 

  66. 66.

    Júnior JAA, Baldo JB (2014) The behavior of zeta potential of silica suspensions. N J Glass Ceram 4(02):29. https://doi.org/10.4236/njgc.2014.42004

    Article  Google Scholar 

  67. 67.

    Clogston JD, Patri AK (2011) Zeta potential measurement. Characterization of nanoparticles intended for drug delivery. Springer, Berlin, pp 63–70. https://doi.org/10.1007/978-1-60327-198-1_6

    Book  Google Scholar 

  68. 68.

    Schwarz S, Lunkwitz K, Kessler B, Spiegler U, Killmann E, Jaeger W (2000) Adsorption and stability of colloidal silica. Colloids Surf A 163(1):17–27. https://doi.org/10.1016/S0927-7757(99)00426-4

    Article  Google Scholar 

  69. 69.

    Romero CP, Jeldres RI, Quezada GR, Concha F, Toledo PG (2018) Zeta potential and viscosity of colloidal silica suspensions: effect of seawater salts, pH, flocculant, and shear rate. Colloids Surf A 538:210–218. https://doi.org/10.1016/j.colsurfa.2017.10.080

    Article  Google Scholar 

  70. 70.

    Ladd R (1978) Preparing test specimens using undercompaction. Geotech Test J 1(1):16–23. https://doi.org/10.1520/GTJ10364J

    Article  Google Scholar 

  71. 71.

    ASTM D2166/D2166M-16 (2016) Standard test method for unconfined compressive strength of cohesive soil, ASTM International, West Conshohocken, PA. https://www.astm.org/cgi-bin/resolver.cgi?D2166D2166M-16

  72. 72.

    ASTM D5333-03 (2003) Standard test method for measurement of collapse potential of soils (Withdrawn 2012), ASTM International, West Conshohocken, PA. https://www.astm.org/cgi-bin/resolver.cgi?D5333-03

  73. 73.

    ASTM D2435-04 (2004) Standard test methods for one-dimensional consolidation properties of soils using incremental loading, ASTM International, West Conshohocken, PA. https://www.astm.org/cgi-bin/resolver.cgi?D2435-04

  74. 74.

    Sabbagh A (1982) Collapsing soil and their clay mineralogy in Tucson, Arizona. Dissertation for fulfilment of PhD degree, University of Arizona, Tucson

  75. 75.

    Pells P, Robertson A, Jennings J, Knight K (1975) A guide to construction on or with materials exhibiting additional settlement due to" Collapse" of grain structure. https://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=PASCALGEODEBRGM7720382974

  76. 76.

    Sultan H (1969) Foundation failures on collapsing soils in the Tucson, Arizona area. In: International residual and engineering conference on expansive clays, pp 394–403

Download references

Acknowledgments

The authors would like to acknowledge the financial support provided by Graduate and Research deputies of Sharif University of Technology. The experiments have been conducted at Advanced Soil Mechanics Laboratories of Civil Engineering Department of Sharif University of Technology which is acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to S. Mohsen Haeri.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haeri, S.M., Valishzadeh, A. Evaluation of Using Different Nanomaterials to Stabilize the Collapsible Loessial Soil. Int J Civ Eng 19, 583–594 (2021). https://doi.org/10.1007/s40999-020-00583-8

Download citation

Keywords

  • Collapsible soil
  • Loess
  • Stabilization
  • Nanomaterial
  • Unconfined compressive strength (UCS)
  • Collapse potential (CP)