Skip to main content

General Solution for Active Earth Pressure on Rigid Walls Under Strip Surcharge on Retained Soils Using Variational Method

Abstract

Hypothesis of the slip surface shape in retained soils makes most of the existing methods for active earth pressure on rigid walls be of no logical basis. The present work aims to rigorously calculate the earth pressure under general conditions. Based on the limit equilibrium conditions of a soil mass retained by rigid walls under a distanced backfill strip surcharge, a variational calculus method was developed to compute the active earth pressure on the walls. A functional relationship between the earth thrust and critical slip surface of the retained soil, and the normal stress acting on it without considering the hypothesis of the slip surface shape, were established. A unified closed-form solution for the earth thrust was derived and could be obtained using an implicit solution technique via MATLAB. The analysis model is of high generality, and the effects of 11 basic parameters on the earth thrust and the corresponding slip surface were analyzed. Some of the considered parameters were the soil properties, soil–wall interface friction angle, wall height, strip surcharge, dip angle between the wall back and soil top surface, horizontal net distance from the wall back to the surcharge, and distribution width of the surcharge. The examples showed that the earth thrusts calculated using the proposed method were approximately 4–16% higher than Coulomb’s solutions but 3–11% lower than traditional stress distribution solutions based on the elastic theory. The proposed method in which the critical slip surface shape need not be subjectively assumed has comparatively more extensive applicability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Abbreviations

a :

Horizontal net distance from the wall back to the strip surcharge

b :

Distribution width of the strip surcharge on the top surface of the retained soil

b e :

Distribution width of the surcharge on a potential slide mass of the retained soil

c :

Cohesion of the soil

E a :

Active earth pressure on the retaining wall

f(x):

Function of the potential slip surface OB

g(x):

Function of the top surface AB of the retained soil

H :

Height of the wall

\(\bar{H}\) :

Resultant force on the potential slide mass of the retained soil in the horizontal direction

K 1, K 2 :

Integral constant

l :

Curve length of the potential slip surface OB

m :

Intermediate variable

\(\bar{M}\) :

Resultant moment on the potential slide mass of the retained soil on the plane

q :

Surcharge on the top surface of the retained soil

r :

Radius with respect to pole Oc of the polar coordinate system

\(\bar{V}\) :

Resultant force acting on the potential slide mass of the retained soil in the vertical direction

x :

Horizontal coordinates with respect to origin O of the rectangular coordinate system, where subscripts B and c denote points B and Oc, respectively

y :

Vertical coordinate with respect to origin O of the rectangular coordinate system, where subscript c denotes point Oc

y′:

First-order derivative of f(x)

z a :

Height of action point from the earth thrust to the retaining wall heel

α :

Dip angle of the wall back

β :

Dip angle of the top surface of the retained soil

γ :

Unit weight of soil

δ :

Soil–wall interface friction angle

θ :

Angular coordinate rotating counterclockwise around pole Oc of the polar coordinate system

η :

Dip angle of tangent at a point on the potential slip surface

λ 1, λ 2 :

Lagrange multiplier

ξ :

Ratio of za to H

σ :

Normal stress on potential slip surface OB

τ :

Shear stress on potential slip surface OB

ϕ :

Angle of internal friction of soil

References

  1. 1.

    Kopáscy J (1955) Über die Bruchflächen und Bruchspannungen in den Erdbauten. In Gedenkbuch für Prof. Dr. Jáky J (Editor Széchy K). Akadémiai Kiadó, Budapest, Hungary, pp 81–99 (in German)

  2. 2.

    Kopáscy J (1957) Three dimensional stress distribution and slip surface in earth work at rupture. In Proceedings of the 4th international conference on soil mechanics and foundation engineering, London, UK, vol 1, pp 339–342

  3. 3.

    Kopáscy J (1961) Distribution des contraintes a la rupture forme de la surface de glissement et hauteur théorique des talus. In Proceedings of the 5th international conference on soil mechanics and foundation engineering, Paris, France, vol 2, pp 641–650 (in French)

  4. 4.

    Baker R, Garber M (1977) Variational approach to slope stability. In Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, Japan, vol 2, pp 65–68

  5. 5.

    Baker R, Garber M (1978) Theoretical analysis of the stability of slopes. Geotechnique 28(4):395–411. https://doi.org/10.1680/geot.1978.28.4.395

    Article  Google Scholar 

  6. 6.

    Garber M, Baker R (1977) Bearing capacity by variational method. In: Journal of the geotechnical engineering division—proceedings of ASCE 103 (GT 11), pp 1209–1225

  7. 7.

    Garber M, Baker R (1979) Extreme-value problems of limiting equilibrium. In: Journal of the geotechnical engineering division—proceedings of ASCE 105 (GT 10), pp 1155–1171

  8. 8.

    Chen WF, Snitbhan N (1975) On slip surface and slope stability analysis. Soils Found 15(3):41–49

    Article  Google Scholar 

  9. 9.

    Castillo E, Revilla J (1977) One application of the calculus of variations to the stability of slopes. In: Proceedings of the 9th international conference on soil mechanics and foundation engineering, Tokyo, Japan, vol 2, pp 25–30

  10. 10.

    Revilla J, Castillo E (1977) The calculus of variations applied to stability of slopes. Geotechnique 27(1):1–11. https://doi.org/10.1680/geot.1977.27.1.1

    Article  Google Scholar 

  11. 11.

    Leshchinsky D, Reinschmidt AJ (1985) Stability of membrane reinforced slopes. J Geotech Eng ASCE 111(11):1285–1300. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:11(1285)

    Article  Google Scholar 

  12. 12.

    Leshchinsky D, Boedeker RH (1989) Geosynthetic reinforced soil structures. J Geotech Eng ASCE 115(10):1459–1478. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:10(1459)

    Article  Google Scholar 

  13. 13.

    Zhang F, Leshchinsky D, Baker R, Gao YF, Leshchinsky B (2016) Implications of variationally derived 3D failure mechanism. Int J Numer Anal Methods Geomech 40:2514–2531. https://doi.org/10.1002/nag.2543|

    Article  Google Scholar 

  14. 14.

    Jong De, De Josselin G (1980) Application of the calculus of variations to the vertical cut-off in cohesive frictionless soil. Geotechnique 30(1):1–16. https://doi.org/10.1680/geot.1980.30.1.1

    Article  Google Scholar 

  15. 15.

    Soubra AH, Kastner R (1992) Influence of seepage flow on the passive earth pressures. In: Proceedings of the international conference on retaining structures, ICE, Cambridge, UK, pp 67–76

  16. 16.

    Soubra AH, Kastner R, Benmansour A (1999) Influence of the seepage force on the passive earth pressures. In: Proceedings of the 12th European conference on soil mechanics and geotechnical engineering, Amsterdam, Netherland, vol 2, pp 851–856

  17. 17.

    Soubra AH, Kastner R, Benmansour A (1999) Passive earth pressures in the presence of hydraulic gradients. Geotechnique 49(3):319–330. https://doi.org/10.1680/geot.1999.49.3.319

    Article  Google Scholar 

  18. 18.

    Puła O, Pula W, Wolny A (2005) On the variational solution of a limiting equilibrium problem involving an anchored wall. Comput Geotech 32(2):107–121. https://doi.org/10.1016/j.compgeo.2005.01.002

    Article  Google Scholar 

  19. 19.

    Luan M, Nogami T (1997) Variational analysis of earth pressure on a rigid earth-retaining wall. J Eng Mech 123(5):524–530. https://doi.org/10.1061/(ASCE)0733-9399(1997)123:5(524)

    Article  Google Scholar 

  20. 20.

    Li X, Liu W (2010) Study on the action of the active earth pressure by variational limit equilibrium method. Int J Numer Anal Methods Geomech 34(10):991–1008. https://doi.org/10.1002/nag.840

    Article  MATH  Google Scholar 

  21. 21.

    Chen J, Hu R, Xu M (2016) Active earth pressure calculation considering force point location. Eng Mech 33(11):132–139. https://doi.org/10.6052/j.issn.1000-4750.2015.03.0246(in Chinese)

    Article  Google Scholar 

  22. 22.

    Jarquio R (1981) Total lateral surcharge pressure due to strip load. In: Journal of the geotechnical engineering division—proceedings of ASCE 107(GT 10), pp 1424–1428

  23. 23.

    Misra B (1980) Lateral pressures on retaining walls due to loads on surfaces of granular backfills. Soils Found 20(2):33–44

    Article  Google Scholar 

  24. 24.

    Steenfelt JS, Hansen B (1984) Sheet pile design earth pressure for strip load. J Geotech Eng Div ASCE 110(7):976–986. https://doi.org/10.1061/(ASCE)0733-9410(1984)110:7(976)

    Article  Google Scholar 

  25. 25.

    Kim JS, Barker RM (2002) Effect of live load surcharge on retaining walls and abutments. J Geotech Geoenviron Eng 128(10):803–813. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(803)

    Article  Google Scholar 

  26. 26.

    Greco VR (2006) Lateral earth pressure due to backfill subject to a strip of surcharge. Geotech Geol Eng 24(3):615–636. https://doi.org/10.1007/s10706-005-2009-x

    Article  Google Scholar 

  27. 27.

    Georgiadis M, Anagnostopoulos C (1998) Lateral pressure on sheet pile walls due to strip load. J Geotech Geoenviron Eng 124(1):95–98. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:1(95)

    Article  Google Scholar 

  28. 28.

    Motta E (1994) Generalized Coulomb active-earth pressure for distanced surcharge. J Geotech Eng ASCE 120(6):1072–1079. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:6(1072)

    Article  Google Scholar 

  29. 29.

    Farzaneh O, Askari F, Fatemi J (2014) Active earth pressure induced by strip loads on a backfill. Int J Civ Eng 12(4):281–291

    Google Scholar 

  30. 30.

    Ghanbari A, Taheri M (2012) An analytical method for calculating active earth pressure in reinforced retaining walls subject to a line surcharge. Geotext Geomembr 34:1–10. https://doi.org/10.1016/j.geotexmem.2012.02.009

    Article  Google Scholar 

  31. 31.

    Hou G, Shu S (2019) Trial wedge approach to determine lateral earth pressures. Int J Geomech 19(1):06018035. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001326

    Article  Google Scholar 

  32. 32.

    Coulomb CA (1776) Essai sur une application des règles de maximis and minimis à quelques problèmes de statique, relatifs à l’architecture. Mémoires de Mathématiques et de Physique Présentés à l’Académie Royale des Sciences par Divers Savants, et Lus sans ses Assemblées VII, pp 343–382 (in French)

  33. 33.

    Wang YZ (2000) Distribution of earth pressure on a retaining wall. Géotechnique 50(1):83–88. https://doi.org/10.1680/geot.2000.50.1.83

    Article  Google Scholar 

  34. 34.

    Soubra AH, Macuh B (2002) Active and passive earth pressure coefficients by a kinematical approach. Proc Inst Civ Eng Geotech Eng 155(2):119–131. https://doi.org/10.1680/geng.2002.155.2.119

    Article  Google Scholar 

  35. 35.

    Xie Y, Leshchinsky B (2016) Active earth pressures from a log-spiral slip surface with arching effects. Geotech Lett 6:149–155. https://doi.org/10.1680/jgele.16.00015

    Article  Google Scholar 

  36. 36.

    Bang S (1985) Active earth pressure behind retaining walls. J Geotech Eng ASCE 111(3):407–412. https://doi.org/10.1061/(ASCE)0733-9410(1985)111:3(407)

    Article  Google Scholar 

  37. 37.

    Chang MF (1997) Lateral earth pressures behind rotating walls. Can Geotech J 34(4):498–509. https://doi.org/10.1139/t97-016

    Article  Google Scholar 

  38. 38.

    Paik K, Salgado R (2003) Estimation of active earth pressure against rigid retaining walls considering arching effects. Geotechnique 53(7):643–653. https://doi.org/10.1680/geot.2003.53.7.643

    Article  Google Scholar 

  39. 39.

    Chen L (2014) Active earth pressure of retaining wall considering wall movement. Eur J Environ Civ Eng 18(8):910–926. https://doi.org/10.1080/19648189.2014.911121

    Article  Google Scholar 

  40. 40.

    Li JP, Wang M (2014) Simplified method for calculating active earth pressure on rigid retaining walls considering the arching effect under translational mode. Int J Geomech 14(2):282–290. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000313

    Article  Google Scholar 

  41. 41.

    Khosravi MH, Pipatpongsa T, Takemura J (2016) Theoretical analysis of earth pressure against rigid retaining walls under translation mode. Soils Found 56(4):664–675. https://doi.org/10.1016/j.sandf.2016.07.007

    Article  Google Scholar 

  42. 42.

    Rao P, Chen Q, Zhou Y, Nimbalkar S, Chiaro G (2016) Determination of active earth pressure on rigid retaining wall considering arching effect in cohesive backfill soil. Int J Geomech 16(3):04015082. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000589

    Article  Google Scholar 

  43. 43.

    Zhou Y, Chen Q, Chen F, Xue X, Basack S (2018) Active earth pressure on translating rigid retaining structures considering soil arching effect. Eur J Environ Civ Eng 22(8):910–926. https://doi.org/10.1080/19648189.2016.1229225

    Article  Google Scholar 

  44. 44.

    Giaquinta M, Hildebrandt S (2004) Calculus of variations I, vol 310. Springer, Grundlehren

    Book  Google Scholar 

  45. 45.

    The MathWorks Inc (2018) Global Optimization Toolbox: User’s Guide (R2018b). http://www.mathworks.com/help/pdfdoc/gads/gadstb.pdf. Accessed 10 Nov 2018

  46. 46.

    Rankine WJM (1857) On the stability of loose earth. Philos Trans R Soc Lond 147:9–27

    Google Scholar 

  47. 47.

    Beton-Kalender (1983) Verlag von Wilhelm. Ernst and Sohn, Munich (in German)

    Google Scholar 

  48. 48.

    Cernica JN (1995) Geotechnical engineering: foundation design. Wiley, New York

    Google Scholar 

  49. 49.

    China National Code GB50330-2013 (2014) Technical code for building slope engineering. China Architecture and Building Press, Beijing (in Chinese)

    Google Scholar 

  50. 50.

    Tsagareli ZV (1965) Experimental investigation of the pressure of a loose medium on retaining wall with vertical back face and horizontal backfill surface. Soil Mech Found Eng 91(4):197–200

    Article  Google Scholar 

  51. 51.

    Tang ZC, Peng YZ, Song JW (1988) Centrifuge model test of a rigid wall used to retain cohesionless soil. J Chongqing Jiaotong Univ 25(2):48–56 (in Chinese)

    Google Scholar 

  52. 52.

    Goel S, Patra NR (2008) Effect of arching on active earth pressure for rigid retaining walls considering translation mode. Int J Geomech 8(2):123–133. https://doi.org/10.1061/(ASCE)1532-3641(2008)8:2(123)

    Article  Google Scholar 

  53. 53.

    Khosravi MH, Pipatpongsa T, Takemura J (2013) Experimental analysis of earth pressure against rigid retaining walls under translation mode. Geotechnique 63(12):1020–1028. https://doi.org/10.1680/geot.12.P.021

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Grant no. 51578466).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shiguo Xiao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Yan, Y. & Xia, P. General Solution for Active Earth Pressure on Rigid Walls Under Strip Surcharge on Retained Soils Using Variational Method. Int J Civ Eng 19, 881–896 (2021). https://doi.org/10.1007/s40999-020-00579-4

Download citation

Keywords

  • Retaining walls
  • Active earth pressure
  • Variational calculus method
  • Limit equilibrium
  • Strip surcharge