Skip to main content

An Equivalent Method for Bar Slip Simulation in Reinforced Concrete Frames


An extreme loading on a reinforced concrete frame leads to severe increase in cracks in concrete as well as large strains in reinforcing bars. This, in turn, results in reduction of steel–concrete bond as well as an increase in the subsidiary effects of slip. In the current study, to include the slip effects in the numerical analyses, an indirect approach based on the results of pull-out test modeling is proposed. The proposed approach suggests a steel strength-reduction factor of 0.6 so as to apply to the bars prone to slip. This value is obtained based on the results of micro-modeling of available experimental pull-out tests using ABAQUS. To account for the bond-slip effect between concrete and rebar, adjacent nodes of concrete and rebar were connected using nonlinear springs. To estimate the length of slip prone zone, a sensitivity analysis on the collapse behavior of two reinforced concrete sub-frames from a 10-story building was conducted. The experimental data for the sub-frames were available. Corroborated with the experimental data revealed that if the length of the slip prone zone is considered to be twice the depth of the beam, the presented indirect approach will be capable of predicting the load–deformation response with a good accuracy. The obtained results showed the significance of considering slip effect in the analyses of reinforced concrete frames as well.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. 1.

    Sasani M, Werner A, Kazemi A (2011) Bar fracture modeling in progressive collapse analysis of reinforced concrete structures. Eng Struct 33:401–409.

    Article  Google Scholar 

  2. 2.

    Fernandes C, Varum H, Costa A (2013) Importance of the bond–slip mechanism in the numerical simulation of the cyclic response of RC elements with plain reinforcing bars. Eng Struct 56:396–406.

    Article  Google Scholar 

  3. 3.

    Mousavi SS, Dehestani M (2015) Implementation of bond-slip effects on behavior of slabs in structures. Comput Concr 16:311–327.

    Article  Google Scholar 

  4. 4.

    Dehestani M, Mousavi SS (2015) Modified steel bar model incorporating bond-slip effects for embedded element method. Constr Build Mater 81:284–290.

    Article  Google Scholar 

  5. 5.

    Ngo D, Scordelis AC (1967) Finite element analysis of reinforced concrete beams. ACI Struct J 64:152–163.

    Article  Google Scholar 

  6. 6.

    Ibrahimbegovic A, Boulkertous A, Davenne L, Brancherie D (2010) Modeling of reinforced-concrete structures providing crack spacing based on XFEM, EDFEM and novel operator split solution procedure. Int J Numer Methods Eng 83:452–481.

    Article  MATH  Google Scholar 

  7. 7.

    Ibrahimbegovic A, Boulkertous A, Davenne L, Muhasilovic M, Porkrklic A (2010) On modeling of fire resistance tests on concrete and reinforced-concrete structures. Comput Concr 7(4):285–301.

    Article  Google Scholar 

  8. 8.

    Rubiano-Benavides NR (1998) Predictions of the inelastic seismic response of concrete structures including shear deformations and anchorage slip. Ph.D. Dissertation, University of Texas, Austin

  9. 9.

    Casanova A, Jason L, Davenne L (2012) Bond slip model for the simulation of reinforced concrete structures. Eng Struct 39:66–78.

    Article  Google Scholar 

  10. 10.

    Qian B, Li B, Zhang ZW (2014) Testing and simulation of 3D effects on progressive collapse resistance of RC buildings. Mag Concr Res.

    Article  Google Scholar 

  11. 11.

    de Terán JRD, Haach VG (2018) Equivalent stress-strain law for embedded reinforcements considering bond-slip effects. Eng Struct 165:247–253.

    Article  Google Scholar 

  12. 12.

    Yang Z, Liu Z, Xiong Y, Li M (2018) Three-dimensional finite-element analysis of bond-slip behavior between crescent ribbed bar and concrete based on spring element. J Mater Civ Eng.

    Article  Google Scholar 

  13. 13.

    Feng DC, Xu J (2018) An efficient fiber beam-column element considering flexure–shear interaction and anchorage bond-slip effect for cyclic analysis of RC structures. Bull Earthq Eng 16:5425–5452.

    Article  Google Scholar 

  14. 14.

    Rashidian O, Abbasnia R, Ahmadi R, Mohajeri Nav F (2016) Progressive collapse of exterior reinforced concrete beam–column sub-assemblages: considering the effects of a transverse frame. Int J Concr Struct Mater 10:479–497.

    Article  Google Scholar 

  15. 15.

    Bao Y, Kunnath SK, El-Tawil S, Lew HS (2008) Macromodel-based simulation of progressive collapse: RC frame structures. J Struct Eng 134:1079–1091.

    Article  Google Scholar 

  16. 16.

    Yu J, Tan KH (2011) Experimental and numerical investigation on progressive collapse resistance of reinforced concrete beam column sub-assemblages. Eng Struct 55:90–106.

    Article  Google Scholar 

  17. 17.

    Kwak HG, Kim JK (2006) Implementation of bond-slip effect in analyses of RC frames under cyclic loads using layered section method. Eng Struct 28:1715–1727.

    Article  Google Scholar 

  18. 18.

    Limkatanyu S, Spacone E (2002) Reinforced concrete frame element with bond interfaces. I: displacement-based, force-based, and mixed formulations. J Struct Eng 128:346–355.

    Article  Google Scholar 

  19. 19.

    Kang SB, Hai Tan K (2016) Bond–slip behavior of deformed reinforcing bars embedded in well-confined concrete. Mag Concr Res 68:515–529.

    Article  Google Scholar 

  20. 20.

    BaniAsad E, Dehestani M (2019) Incorporation of corrosion and bond-slip effects in properties of reinforc0ing element embedded beams. Structures 20:105–115.

    Article  Google Scholar 

  21. 21.

    Ruiz MF, Muttoni A, Gambarova PG (2007) Analytical modeling of the pre-and post-yield behavior of bond in reinforced concrete. J Struct Eng 133:1364–1372.

    Article  Google Scholar 

  22. 22.

    Degroot AK, Kusters GMA, Monnier T (1981) Numerical modelling of bond slip behavior. In: NASA STI/Recon technical report no. 82

  23. 23.

    Ciampi V, Bertero VV, Popov EP, Eligehausen R (1981) Analytical model for deformed bar bond under generalized excitations. In: Proceedings of IABSE colloquium on advanced mechanics of reinforced concrete. Delft, pp 53–67

  24. 24.

    Hibbitt, Karlsson and Sorensen Inc. (2002) Abaqus/Standard users’ manual (Version 6.3). Dassault Systemes Simulia Corp., Pawtucket, RI

    Google Scholar 

  25. 25.

    Haskett M, Oehlers DJ, Mohamed Ali MS (2008) Local and global bond characteristics of steel reinforcing bars. Eng Struct 30:376–383.

    Article  Google Scholar 

  26. 26.

    Comité Euro-International du Béton (CEB) (1993) CEB–FIP model code 1990: model code for concrete structures. Thomas Telford, London

    Book  Google Scholar 

  27. 27.

    CEB (2010) CEB-FIP model code 2010. Thomas Telford, London

    Google Scholar 

  28. 28.

    Lew HS, Bao Y, Pujol S, Sozen MA (2014) Experimental study of reinforced concrete assemblies under column removal scenario. ACI Struct J 111:881–892.

    Article  Google Scholar 

  29. 29.

    Committee ACI (2005) Building code requirements for structural concrete (ACI 318-05) and commentary (ACI 318R-05). American Concrete Institute, Michigan

    Google Scholar 

  30. 30.

    Lubliner J, Oliver S, Oñate E (1989) A plastic-damage model for concrete. Int J Solids Struct 25:299–326.

    Article  Google Scholar 

  31. 31.

    Fortunato G, Funari MF, Lonetti P (2017) Survey and seismic vulnerability assessment of the Baptistery of San Giovanni in Tumba (Italy). J Cult Herit 26:64–78.

    Article  Google Scholar 

  32. 32.

    Ombres L, Verre S (2019) Flexural strengthening of RC beams with steel-reinforced grout: Experimental and numerical investigation. J Compos Constr 23:04019035.

    Article  Google Scholar 

  33. 33.

    Rasouli M, Broujerdian V (2019) 3D finite element modeling of FRP-confined rectangular short columns considering variation of Poisson’s ratio. Iran J Sci Technol Trans Civ Eng.

    Article  Google Scholar 

  34. 34.

    Hsu HS, Hsu CTT (1994) Complete stress-strain behavior of high-strength concrete under compression. Mag Concr Res 46:301–312.

    Article  Google Scholar 

  35. 35.

    Nayal R, Rasheed HA (2006) Tension stiffening model for concrete beams reinforced with steel and FRP bars. J Mater Civ Eng 18:831–841.

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vahid Broujerdian.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohemmi, M., Broujerdian, V. & Rajaeian, P. An Equivalent Method for Bar Slip Simulation in Reinforced Concrete Frames. Int J Civ Eng 18, 851–863 (2020).

Download citation


  • Reinforced concrete
  • Finite element
  • Bond
  • Slip
  • Pull-out test