Skip to main content

Evaluation the Shear Strength Behavior of aged MSW using Large Scale In Situ Direct Shear Test, a case of Tabriz Landfill


The current study presents the physical and mechanical properties of municipal solid waste (MSW) with different ages of new and old Tabriz landfill. Although there are several theoretical and laboratory methods to investigate the shear strength parameters of MSW, field methods provide more accurate results due to the minimum MSW disturbance and changes, so in this study the shear strength parameters of MSW Tabriz landfill were evaluated using the “Large Scale in Situ Direct Shear Device” with the cross-sectional dimensions 122 × 122 cm. In spite of difficulties related to conducting tests such as potential exposure to various contaminations and the lack of specific equipment in the beginning, it provided more realistic results of the geotechnical behavior of municipal solid waste compared to other methods. Moreover, the in situ unit weight, physical analysis, moisture and organic content at different ages were evaluated to better understand the mechanical response with increase in the age of MSW. The results showed the cohesion and friction angle of 5- and 16-year-old MSW was estimated as 1.17, 2.215 kPa and 31.51°, 21.51°, respectively; According to the results, the shear strength of 5- and 16-year-old MSW is mainly controlled by the friction angle which seems due to the MSW composition as a function of the consumption pattern. The physical analysis of fresh MSW from 2005 to 2017 showed an increase in the fiber content including plastics and textiles. Moreover, studies on MSW mechanical responses over the time revealed a decrease in the shear strength because of the raise in the fiber and plastic content.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others


  1. Caicedo B, Yamin L, Giraldo E, Coronado O (2002) Geomechanical properties of municipal solid waste in Doña Juana sanitary landfill. In: Proc. Fourth Int. Congr. Environ. Geotech., Rio Janeiro

    Google Scholar 

  2. Koelsch F, Fricke K, Mahler C, Damanhuri E (2005) Stability of landfills—the Bandung dumpsite desaster. In: 10th Int. Waste Manag. Landfill Symp. 2000.

  3. Falamaki A, Ghareh S, Homaee M, Hamtaeipour Shirazifard A, Abedpour S, Kiani S, Mousavi N, Rezaei M, Taghizadeh Motlagh M, Dehbozorgi M, Nouri A (2019) Laboratory Shear Strength Measurements of Municipal Solid Waste at Room and Simulated In Situ Landfill Temperature, Barmshoor Landfill, Iran. Int J Civ Eng DOI:10.1007/s40999-019-00446-x

  4. Karimpour-Fard M, Machado SL, Shariatmadari N, Noorzad A (2011) A laboratory study on the MSW mechanical behavior in triaxial apparatus. Waste Manag 31:1807–1819.

    Article  Google Scholar 

  5. Zekkos D, Athanasopoulos GA, Bray JD, Grizi A, Theodoratos A (2010) Large-scale direct shear testing of municipal solid waste. Waste Manag. 30:1544–1555. Accessed 9 Jan 2018

  6. Ramaiah BJ, Ramana GV, Datta M (2017) Mechanical characterization of municipal solid waste from two waste dumps at Delhi, India. Waste Manag 68:275–291.

    Article  Google Scholar 

  7. Richardson G, Reynolds D (1991) Geosynthetic considerations in a landfill on compressible clays. Proc Geosynth 91:507–516

    Google Scholar 

  8. Houston WN, Houston S, Liu JW, Elsayed A, Sanders CO (1995) In-situ testing methods for dynamic properties of MSW landfills. in: Geotechnical Special Publications, pp 73–82. Accessed 10 Jan 2018

  9. Withiam J. Tarvin P, Bushell T (1995) R. Snow, prediction and performance of municipal landfill slope. Accessed 9 Jan 2018

  10. Mazzucato A, Simonini P, Colombo S (1999) Analysis of block slide in a MSW landfill. Proc Sardinia 99:537–544

    Google Scholar 

  11. Thomas S, Aboura AA, Gourc JP, Gotteland P, Billard H, Delineau T, Vuillemin M (2000) An in-situ waste mechanical experimentation on a French landfill. Proc Sardinia 99:445–452

    Google Scholar 

  12. Pelkey S, Valsangkar A, Landva A (2001) Shear displacement dependent strength of municipal solid waste and its major constituent. Geotech Test J 24:381.

    Article  Google Scholar 

  13. Ali L, Ali S, Maqbool A (2009) Large direct shear test apparatus for in situ testing of municipal solid waste landfill sites. In: Charact. Model. Perform. Geomaterials, American Society of Civil Engineers, Reston, pp. 86–91. doi:10.1061/41041(348)13

  14. Miyamoto S, Yasufuku N, Ishikura R (2015) In-situ shearing response and shear strength of various solid waste ground focused on fibrous materials composition. Geomech. from Micro to Macro, pp 1357–1362

  15. Kölsch F, Ziehmann G (2004) Landfill stability—risks and challenges. Waste Manag World.

  16. Landva AO, Clark JI (1990) Geotechnics of waste fill. Astm Org, pp. 86–103. Accessed 10 Jan 2018

  17. Oweis IS (1993) Stability of landfills. In: Geotechnical practice for waste disposal. Springer US, Boston, MA, pp 244–268.

  18. Kavazanjian E (2001) Mechanical properties of municipal solid waste. Proc Sardinia 1:415–424

    Google Scholar 

  19. Hossain MS (2002) Mechanics of compressibility and strength of solid waste in bioreactor landfills, North Carolina State University, Raleigh

  20. Machado SL, Vilar OM, Carvalho MF (2008) Constitutive model for long term municipal solid waste mechanical behavior. Comput Geotech 35:775–790.

    Article  Google Scholar 

  21. Nascimento J (2007) Mechanical behavior of municipal solid waste. Ms. C, Accessed 11 Jan 2018

  22. Bareither CA, Benson CH, Edil TB (2012) Effects of waste composition and decomposition on the shear strength of municipal solid waste. J Geotech Geoenvironmental Eng 138:1161–1174.

    Article  Google Scholar 

  23. Gomes C, Lopes ML, Oliveira PJV (2013) Municipal solid waste shear strength parameters defined through laboratorial and in situ tests. J Air Waste Manage Assoc 63:1352–1368.

    Article  Google Scholar 

  24. Gabr MA, Hossain MS, Barlaz MA (2007) Shear strength parameters of municipal solid waste with leachate recirculation. J Geotech Geoenvironmental Eng 133:478–484.

    Article  Google Scholar 

  25. Reddy KR, Hettiarachchi H, Giri RK, Gangathulasi J (2015) Effects of degradation on geotechnical properties of municipal solid waste from orchard hills landfill, USA. Int J Geosynth Gr Eng 1:24.

    Article  Google Scholar 

  26. Shariatmadari N, Karimpour-fard M, Keramati M, Jafari Kolarijani H, Naebi A (2011) Fiber content impact on the shear strength of msw materials in direct shear tests, Sardinia 2011. In: Thirteen. Int. Waste Manag. Landfill Symp. doi:10.13140/2.1.5061.7125.

  27. Sadeghpour AH (2014) Effect of aging on shear strength behavior of municipal solid waste, Iran University of Science and Technology

  28. Zekkos DP (2005) Evaluation of static and dynamic properties of municipal solid waste, University of California

  29. Haque MA (2007) dynamic chracteristics and stability analysis of muncipal solid waste in bioreactor landfills. The University of Texas, Arlington

  30. Ramaiah B, Ramana G, Bansal BK (2016) Field and large scale laboratory studies on dynamic properties of emplaced municipal solid waste from two dump sites at Delhi, India. Soil Dyn Earthq Eng 90:340–357.

    Article  Google Scholar 

  31. Keramati M, Shariatmadari N, Karimpour-Fard M, Saeedanezhad A, Alidoust P (2017) Effects of aging on dynamic properties of MSW: a case study from Kahrizak Landfill, Tehran, Iran, Sci. Iran. (in press)

  32. Organization of waste management in Tabriz, Iran (2015). Accessed 24 Oct 2016

  33. Tchobanoglous G (1993) Integrated solid waste managementengineering principles and management issues.

  34. Dixon N, Jones DRV (2005) Engineering properties of municipal solid waste. Geotext Geomembranes 23:205–233.

    Article  Google Scholar 

  35. ASTM D 2974 (2008) Annu. B. Stand. Am. Soc. Test. Mater., Conshohocken, Pennsylvania

  36. Shariatmadari N, Sadeghpour AH, Mokhtari M (2015) Aging effect on physical properties of municipal solid waste at the Kahrizak Landfill, Iran. Int J Civ Eng 13:126–136.

    Article  Google Scholar 

  37. Landva AO, Clark JI (1986) Geotechnical testing of waste fill. In: Proceedings, 39th Can. Geotech. Conf., Ottawa

  38. Santos SM, Jucá JFT, Aragão JMS (1998) Geotechnical properties of a solid waste landfill: Muribeca’s case. In: Proc. 3rd Int. Congr. Environ. Geotech. Lisboa, pp 181–184

  39. Gotteland P, Gourc J, Aboura A, Thomas S (2000) On site determination of geomechanical characteristics of waste. ISRM Int., pp 1–6

  40. Pereira AGH, Sopena L, Mateos TG (2002) Compressibility of a municipal solid waste landfill. In: Proc., 4th Int. Congr. Environ. Geotech, pp 201–206

  41. Singh MK, Fleming IR, Sharma JS (2010) Development of a practical method for the estimation of maximum lateral displacement in large landfills, Pract. Period. Hazardous, Toxic, Radioact. Waste Manag 14:37–46. doi:10.1061/(ASCE)1090–025X(2010)14:1(37)

  42. Sahadewa A (2014) In-situ assessment of linear and nonlinear dynamic properties of municipal solid waste. Accessed 13 Jan 2018

  43. Coumoulos DG, Koryalos TP, Metaxas IL, Gioka DA (1995) Geotechnical investigation at the main landfill of Athens. Proc Sardinia 95:885–895

    Google Scholar 

  44. Gomes C, Ernesto A, Lopes ML, Moura C (2002) Sanitary landfill of Santo Tirso-municipal waste physical, chemical and mechanical properties. In: Proc. 4th Int. Congr. Environ. Geotech., pp 255–261

  45. Karimpour-Fard M (2009) Mechanical behavior of MSW materials with different initial state under static loading. Iran University of Science and Technology

  46. Machado SL, Karimpour-Fard M, Shariatmadari N, Carvalho MF, Do Nascimento JCF (2010) Evaluation of the geotechnical properties of MSW in two Brazilian landfills. Waste Manag 30:2579–2591.

    Article  Google Scholar 

  47. Zekkos D, Bray JD, Kavazanjian E, Matasovic N, Rathje EM, Riemer MF, Stokoe KH (2006) Unit Weight of Municipal Solid Waste. J Geotech Geoenvironmental Eng 132:1250–1261.

    Article  Google Scholar 

  48. Oettle NK, Matasovic N, Kavazanjian E, Rad N (2010) Characterization and placement of municipal solid waste as engineered fill, Researchgate.Net. pp 1–10

  49. Hyun Il P, Borinara P, Hong KD (2011) Geotechnical considerations for end-use of old municipal solid waste landfills. Int J Environ Res 5:573–584

  50. Gomes C, Lopes ML, Lopes MG (2005) A study of MSW properties of a Portuguese landfill. In: Proc. Int. Work. Hydro-Physico-Mechanics Landfills, LIRIGM, Grenoble, p 13531360

  51. Kölsch F (1996) Der Einfluss der Faserbestandteile auf die Scherfestigkeit von Siedlungsabfall, Technical University Braunschweig [English: The impact of fibrous particles on the shear strength of municipal solid waste]

  52. Siegel RA, Robertson R, Anderson DG (1990) Slope stability investigations at a landfill in Southern California. In: Geotech. Waste Fill. Theory Pract, pp 259–284. Accessed 20 Jan 2018

  53. Howland J, Landva A (1992) Stability analysis of a municipal solid waste landfill. ASCE Geotech Spec Publ 31:1216–1231

    Google Scholar 

  54. Gabr M, Valero S (1995) Geotechnical properties of municipal solid waste, geotech. Test J 18:241–251.

    Article  Google Scholar 

  55. Edincliler A, Benson CH, Edil TB (1996) Shear strength of municipal solid waste: interim report—year 1. Environ Geotech Rep 96:2

    Google Scholar 

  56. Jones R, Taylor D, Dixon N (1997) Shear strength of waste and its use in landfill stability analysis. In: Geoenvironmental engineering: contaminated ground: fate of pollutants and remediation, pp 343–350.,+D.R.V.,+Taylor,+D.P.,+Dixon,+N.,+1997.+Shear+strength+of+waste+and+its+use+in&ots=pW9bBy3PX5&sig=S.CLZ3rMMfvjPI_kMkuN4rrH1oE. Accessed 20 Jan 2018

  57. Kavazanjian EJ (1999) Seismic design of solid waste containment facilities. In: Proc. Eigth Can. Conf. Earthq. Eng., pp 51–89

  58. Sadek S, El-Fadel M, Manasseh C, Abou-Ibrahim A (1999) Geotechnical properties of decomposed solid waste materials, pp 350–357. Accessed 20 Jan 2018

  59. Mahler CF, De Lamare NA (2003) Shear resistance of mechanical biological pre-treated domestic urban waste. In: Proc. Sardinia 2003, Ninth Int. Waste Manag. Landfill Symp., p Paper 471

  60. Harris J, Shafer A, DeGroff W, Hater G, Gabr M, Barlaz M (2006) Shear Strength of degraded reconsitituted municipal solid waste. Geotech Test J 29:141–148

    Google Scholar 

  61. Dixon N, Langer U, Gotteland P, (2008) I. Repository, Institutional Repository Classification and mechanical behaviour relationships for municipal solid waste: study using synthetic wastes This item was submitted to Loughborough’s Institutional Repository ( by the author and i, J. Geotech. Geoenvironmental Eng. 0241:79–90. doi:10.1061/(ASCE)1090-0241(2008)134:1(79).

  62. Singh MK, Sharma JS, Fleming IR (2009) Shear strength testing of intact and recompacted samples of municipal solid waste. Can Geotech J 46:1133–1145.

    Article  Google Scholar 

  63. Shan H-Y, Fan T-H (2009) In-situ tests and slope stability analysis of municipal solid waste landfill. In: Adv. Environ. Geotech., Springer Berlin Heidelberg, Berlin, Heidelberg, pp 590–595. doi:10.1007/978-3-642-04460-1_60

  64. Arif NK (2010) Determination of hydro-mechanical characteristics of biodegradable waste-laboratory and landfill site Accessed 14 Jan 2018

  65. Karimpour-Fard M, Shariatmadari N, Keramati M, Jafari Kolarijani H (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng.

  66. Abreu A, Vilar OM (2017) Influence of composition and degradation on the shear strength of municipal solid waste. Waste Manag 68:263–274.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Mohsen Keramati.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keramati, M., Shahedifar, M., Aminfar, M.H. et al. Evaluation the Shear Strength Behavior of aged MSW using Large Scale In Situ Direct Shear Test, a case of Tabriz Landfill. Int J Civ Eng 18, 717–733 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: