Skip to main content

Field Tests on Influencing Factors of Negative Skin Friction for Pile Foundations in Collapsible Loess Regions


As a reliable building foundation form, piles are driven into collapsible soil layers to ensure stability of foundations. Because of water immersion, significant subsidence occurs on collapsible loess; then negative skin friction emerges on the pile surface, which eventually causes serious bearing capacity failures of pile foundations. Relying on water immersion tests of multiple piles in Lanzhou, China, this study analyzed the influencing factors of negative skin friction for pile foundations in collapsible loess regions. The main factors studied in this research are cumulative relative collapse amount, pile type, and change in loess collapsibility. The results demonstrate that the maximum negative skin friction has a negative correlation to the cumulative relative collapse amount, which is determined by the degree of difficulty of the emergence of the shear fracture surface. Owing to the compaction effect of the driven pile and surcharge load of the exploded pile, their negative skin frictions increase in varying degrees compared to that of the bored concrete pile. At the same test site, the changes in loess collapsibility are mainly affected by natural moisture content and dry density. Increases in both the natural moisture content and dry density reduce the loess collapsibility, immersion settlement rate, and negative skin friction of pile. The loess collapsibility can be improved by surcharge loading and pre-watering to reduce the adverse effect of negative skin friction on pile foundations in engineering applications.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Kim D, Kang SS (2013) Engineering properties of compacted loesses as construction materials. KSCE J Civ Eng 17(2):335–341

    Article  Google Scholar 

  2. 2.

    Wang XL, Zhu YP, Huang XF (2014) Field tests on deformation property of self-weight collapsible loess with large thickness. Int J Geomech 14(3):613–624

    Article  Google Scholar 

  3. 3.

    Li P, Vanapalli S, Li TL (2016) Review of collapse triggering mechanism of collapsible soils due to wetting. J Rock Mech Geotech 8(2):256–274

    Article  Google Scholar 

  4. 4.

    Xu ZJ, Lin ZG, Zhang MS (2007) Loess in China and loess landslides. Chin J Rock Mech 26(7):1297–1312

    Google Scholar 

  5. 5.

    Gong JG, Jia YW, Zhou ZH, Wang Y, Wang WL, Peng H (2011) An experimental study on dynamic processes of ephemeral gully erosion in loess landscapes. Geomorphology 125(1):203–213

    Article  Google Scholar 

  6. 6.

    Feng SJ, Du FL, Shi ZM, Shui WH, Tan K (2015) Field study on the reinforcement of collapsible loess using dynamic compaction. Eng Geol 185:105–115

    Article  Google Scholar 

  7. 7.

    Gaaver KE (2012) Geotechnical properties of Egyptian collapsible soils. Alex Eng J 51(3):205–210

    Article  Google Scholar 

  8. 8.

    Momeni M, Shafiee A, Heidari M, Jafari MK, Mahdavifar MR (2012) Evaluation of soil collapse potential in regional scale. Nat Hazards 64(1):459–479

    Article  Google Scholar 

  9. 9.

    Kalantari B (2013) Foundations on collapsible soils: a review. Proc Inst Civ Eng Forensic 166(2):57–63

    Google Scholar 

  10. 10.

    Qian ZZ, Lu XL, Yang WZ, Cui Q (2014) Behaviour of micropiles in collapsible loess under tension or compression load. Geomech Eng 7(5):477–493

    Article  Google Scholar 

  11. 11.

    Wang GL, Li TL, Xing XL, Zou Y (2015) Research on loess flow-slides induced by rainfall in July 2013 in Yan’an, NW China. Environ Earth Sci 73(12):7933–7944

    Article  Google Scholar 

  12. 12.

    Yuan HP, Zhao P, Wang YX, Zhou HL, Luo YH, Guo PP (2017) Mechanism of deformation compatibility and pile foundation optimum for long-span tower foundation in flood-plain deposit zone. Int J Civ Eng 15(6):887–894

    Article  Google Scholar 

  13. 13.

    Yin F, Zhou H, Liu HL, Chu J (2017) Experimental and numerical analysis of XCC pile–geogrid foundation for existing expressway under traffic load. Int J Civ Eng.

    Article  Google Scholar 

  14. 14.

    Gao XJ, Wang JC, Zhu XR (2007) Static load test and load transfer mechanism study of squeezed branch and plate pile in collapsible loess foundation. J Zhejiang Univ Sci A 8(7):1110–1117

    Article  Google Scholar 

  15. 15.

    Wang LM, Sun JJ, Huang XF, Xu SH, Shi YC, Qiu RD, Zhang ZZ (2011) A field testing study on negative skin friction along piles induced by seismic subsidence of loess. Soil Dyn Earthq Eng 31(1):45–58

    Article  Google Scholar 

  16. 16.

    Liu JY, Gao HM, Liu HL (2012) Finite element analyses of negative skin friction on a single pile. Acta Geotech 7(3):239–252

    Article  Google Scholar 

  17. 17.

    Noorzad R, Pakniat H (2016) Investigating the effect of sample disturbance, compaction and stabilization on the collapse index of soils. Environ Earth Sci 75:1262

    Article  Google Scholar 

  18. 18.

    Azzouz AS, Baligh MM, Whittle AJ (1990) A shaft resistance of piles in clay. J Geotech Eng ASCE 116(2):205–221

    Article  Google Scholar 

  19. 19.

    Muñoz-castelblanco J, Delage P, Pereira JM, Cui YJ (2011) Some aspects of the compression and collapse behaviour of an unsaturated natural loess. Geotech Lett 1(2):17–22

    Article  Google Scholar 

  20. 20.

    Chung SH, Yang SR (2017) Numerical analysis of small-scale model pile in unsaturated clayey soil. Int J Civ Eng 15(6):877–886

    Article  Google Scholar 

  21. 21.

    Kim HJ, Mission JLC (2009) Negative skin friction on piles based on finite strain consolidation theory and the nonlinear load transfer method. KSCE J Civ Eng 13(2):107–115

    Article  Google Scholar 

  22. 22.

    Kong GQ, Zhou H, Liu HL, Ding XM, Liang R (2014) A simplified approach for negative skin friction calculation of special-shaped pile considering pile–soil interaction under surcharge. J Cent South Univ 21(9):3648–3655

    Article  Google Scholar 

  23. 23.

    Tan SA, Fellenius BH (2016) Negative skin friction pile concepts with soil–structure interaction. Geotech Res 3(4):137–147

    Article  Google Scholar 

  24. 24.

    Chen RP, Zhou WH, Chen YM (2009) Influences of soil consolidation and pile load on the development of negative skin friction of a pile. Comput Geotech 36(8):1265–1271

    Article  Google Scholar 

  25. 25.

    Noor ST, Hanna A, Mashhour I (2013) Numerical modeling of piles in collapsible soil subjected to inundation. Int J Geomech 13(5):514–526

    Article  Google Scholar 

  26. 26.

    El-Mossallamy YM, Hefny AM, Demerdash MA, Morsy MS (2013) Numerical analysis of negative skin friction on piles in soft clay. HBRC J 9(1):68–76

    Article  Google Scholar 

  27. 27.

    Huang T, Zheng JH, Gong WM (2015) The group effect on negative skin friction on piles. Proced Eng 116:802–808

    Article  Google Scholar 

  28. 28.

    Mashhour I, Hanna A (2016) Drag load on end-bearing piles in collapsible soil due to inundation. Can Geotech J 53(12):2030–2038

    Article  Google Scholar 

  29. 29.

    Zhou HB, Chen ZC (2007) Analysis of effect of different construction methods of piles on the end effect on skin friction of piles. Front Struct Civ Eng 1(4):458–463

    Google Scholar 

  30. 30.

    GB 50025-2004 (2004) Code for building construction in collapsible loess regions. China Architecture and Building Press, Beijing

    Google Scholar 

  31. 31.

    Baziar MH, Kashkooli A, Saeedi-Azizkandi A (2012) Prediction of pile shaft resistance using cone penetration tests (CPTs). Comput Geotech 45(9):74–82

    Article  Google Scholar 

  32. 32.

    Saeedi-Azizkandi A, Kashkooli A, Baziar MH (2014) Prediction of uplift pile displacement based on cone penetration tests (CPT). Geotech Geol Eng 32(4):1043–1052

    Article  Google Scholar 

  33. 33.

    Reznik YM (2007) Influence of physical properties on deformation characteristics of collapsible soils. Eng Geol 92(1):27–37

    Article  Google Scholar 

  34. 34.

    Qi JJ, Xu RQ, Gong WM (2006) Experimental study on negative skin friction resistance on piles in collapsible loess area. Rock Soil Mech 27:881–884

    Google Scholar 

  35. 35.

    Huang XF, Yang XH (2013) A study progress on in-situ soaking test on collapsible loess. Rock Soil Mech 34:222–228

    Google Scholar 

  36. 36.

    Fang JY, Wu ZH (1996) Generalized perfectly matched layer for the absorption of propagating and evanescent waves in lossless and lossy media. IEEE T Microw Theory 44(12):2216–2222

    Article  Google Scholar 

  37. 37.

    Wang JQ, Lei SY, Li XL, Wang YM, Liu Z, Wang XG (2013) Correlation of wet collapsibility coefficient and physical property parameters of loess. Coal Geol Explor 41(3):42–50

    Google Scholar 

  38. 38.

    Li YN (2007) Analysis on factors affecting collapsibility coefficient of loess. Glob Geol 26(1):108–113

    Google Scholar 

Download references


The authors wish to gratefully acknowledge the financial support from the National Natural Science Foundation of China (Grant Nos. 41672273 and 41272292). The research was also substantially supported by the Key Laboratory of Geotechnical and Underground Engineering of Ministry of Education (Tongji University).


National Natural Science Foundation of China (Grant Nos. 41672273 and 41272292).

Author information



Corresponding author

Correspondence to Haofeng Xing.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xing, H., Liu, L. Field Tests on Influencing Factors of Negative Skin Friction for Pile Foundations in Collapsible Loess Regions. Int J Civ Eng 16, 1413–1422 (2018).

Download citation


  • Collapsible loess
  • Negative skin friction
  • Pile foundations
  • Influencing factors
  • Collapse amount