Advertisement

Seismic hazard assessment of arch dams via dynamic modelling: an application to the Rules Dam in Granada, SE Spain

  • Enrico Zacchei
  • José Luis Molina
  • Reyolando Manoel Lopes Rebello da Fonseca Brasil
Research paper

Abstract

Dams are extremely strategic structures that must be carefully designed for human and environmental safety. This paper aims to analyse the influence of probabilistic and deterministic seismic hazards, defined for the site, on the singular points of the Rules dam in southern Spain. A comparison with the data from a recent seismogenic zone (2015) has been made; the adopted criteria for the comparison have been carefully explained. Seismic input from the Safety Evaluation Earthquake has shown that maximum accelerations are three times higher than the Spanish code value. Consequently, the stress has exceeded the maximum allowed tension, creating a number of plastic hinges. To consider the fluid–structure–foundation interaction, 2D and 3D mathematical models have been developed via finite element and gravity methods. A good calibration between the observations and modelling output has been obtained.

Keywords

Dynamic analysis Hydraulic structure Rules arch-dam Seismic hazard Two- and three-dimensional models 

Abbreviations

THA

Time-history analysis

PSHA

Probabilistic Seismic Hazard Assessment

DSHA

Deterministic Seismic Hazard Assessment

OBE

Operating basis earthquake

SEE

Safety evaluation earthquake

PSA

Pseudo-spectra acceleration

ZS

Seismogenic zones

IGN

National Geographic Institute

IAG

Andalusian Institute of Geophysics

PDF

Probability density function

PGA

Peak ground acceleration

ESM

Engineering strong-motion

UHS

Uniform hazard spectra

FEA

Finite element analysis

Notes

Acknowledgements

The authors thank the native English speaking editors at American Journal Experts (AJE) for the manuscript review. The third author acknowledges support by CNPq, a Brazilian research funding agency.

Compliance with ethical standards

Funding

This study was funded by doctoral school Studii Salamantini of University of Salamanca [reference number 100015235810]. The manuscript revision was funded by the doctoral programme “Geotechnologies applied to construction, energy and industry” of University of Salamanca [reference number J6ZWMC1S].

References

  1. 1.
    Cornell CA (1968) Engineering seismic risk analysis. Bull Seismol Soc Am 58(5):1583–1606Google Scholar
  2. 2.
    Woo G (1996) Kernel estimation methods for seismic hazard area source modeling. Bull Seismol Soc Am 86(2):353–362Google Scholar
  3. 3.
    Gaspar-Escribano JM, Rivas-Medina A, Parra H, Cabañas L, Benito B, Ruiz Barajas S, Martínez Solares JM (2015) Uncertainty assessment for the seismic hazard map of Spain. Eng Geol 199:62–73CrossRefGoogle Scholar
  4. 4.
    Faccioli E, Paolucci R (2005) Elementi di sismologia applicata all’ingeneria. Pitagora Editrice, BolognaGoogle Scholar
  5. 5.
    Comisión Permanente de Normas Sismorresistentes (2002) Norma de construcción sismorresistente: Parte general y edificación. Ministro de Fomento, MadridGoogle Scholar
  6. 6.
    Gutenberg B, Richter CF (1944) Frequency of earthquakes in California. Bull Seismol Soc Am 34(4):185–188Google Scholar
  7. 7.
    Zhan Z (2017) Gutenberg-Richter law for deep earthquakes revisited: a dual-mechanism hypothesis. Earth Planet Sci Lett 461:1–7CrossRefGoogle Scholar
  8. 8.
    IGME (2015) ZESIS: Base de Datos de Zonas Sismogénicas de la Península Ibérica y territorios de influencia para el cálculo de la peligrosidad sísmica en España. http://info.igme.es/zesis. Accessed June 2016
  9. 9.
    López Casado C, Sanz de Galdeano C, Delgado J, Peinado MA (1995) The b parameter in the Betic Cordillera, Rif and nearby sectors. Relations with the tectonics of the region. Tectonophysics 248:277–292CrossRefGoogle Scholar
  10. 10.
    Instituto Geográfico Nacional (IGN) (2017). http://www.ign.es/web/ign/portal/sis-catalogo-terremotos. Accessed 14 June 2016
  11. 11.
    Instituto Andaluz de Geofísica (IAG) (2017). http://iagpds.ugr.es/
  12. 12.
    Sabetta F, Pugliese A (1996) Estimation of response spectra and simulation of nonstationary earthquake ground motions. Bull Seismol Soc Am 86(2):337–352Google Scholar
  13. 13.
    Ambraseys NN, Simpson KA, Bommer JJ (1996) Prediction of horizontal response spectra in Europe. Earthq Eng Struct Dyn 25:371–400. doi: 10.1002/(SICI)1096-9845(199604)25:4<371::AID-EQE550>3.0.CO;2-A CrossRefGoogle Scholar
  14. 14.
    Ambraseys NN, Douglas J, Sarma SK, Smit PM (2005) Equations for the estimation of strong ground motions from shallow crustal earthquakes using data from Europe and the Middle East: Horizontal peak ground acceleration and spectral acceleration. Bull Earthq Eng 3(1):1–53.  https://doi.org/10.1007/s10518-005-0183-0 CrossRefGoogle Scholar
  15. 15.
    Berge-Thierry C, Cotton F, Scotti O (2003) New empirical response spectral attenuation laws for moderate European earthquakes. J Earthquake Eng 7(2):193–222.  https://doi.org/10.1080/13632460309350446 Google Scholar
  16. 16.
    Benito B, Gaspar-Escribano JM (2007) Ground motion characterization and seismic hazard assessment in Spain: context, problems and recent developments. J Seismolog 11:433–452.  https://doi.org/10.1007/s10950-007-9063-1 CrossRefGoogle Scholar
  17. 17.
    Scordilis EM (2006) Empirical global relations converting Ms and mb to moment magnitude. J Seismolog 10:225–236.  https://doi.org/10.1007/s10950-006-9012-4 CrossRefGoogle Scholar
  18. 18.
    Benito MB, Navarro M, Vidal F, Gaspar-Escribano J, García-Rodríguez MJ, Martínez-Solares JM (2010) A new seismic hazard assessment in the region of Andalusia (Southern Spain). Bull Earthq Eng 8:739–766.  https://doi.org/10.1007/s10518-010-9175-9 CrossRefGoogle Scholar
  19. 19.
    Cabañas L, Rivas-Medina A, Martínez-Solares JM, Gaspar-Escribano JM, Benito B, Antón R, Ruiz-Barajas S (2015) Relationships between Mw and other earthquake size parameters in the Spanish IGN seismic catalog. Pure Appl Geophys 172:2397–2410.  https://doi.org/10.1007/s00024-014-1025-2 CrossRefGoogle Scholar
  20. 20.
    Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367Google Scholar
  21. 21.
    Ordaz M, Aguilar A, Arboleda J (2007) Crisis2007 (Version 5.4). Unam, CoyoacánGoogle Scholar
  22. 22.
    Sanz de Galdeano C, Peláez Montilla JA, López Casado C (2003) Seismic potential of the main active faults in the Granada basin (southern Spain). Pure Appl Geophys 160:1537–1556.  https://doi.org/10.1007/s00024-003-2359-3 CrossRefGoogle Scholar
  23. 23.
    Luzi L, Puglia R, Russo E, ORFEUS WG5 (2016) Engineering Strong Motion Database, version 1.0. Istituto Nazionale di Geofis e Vulcanol Obs Res Facil Eur Seismol. doi: 10.13127/ESM. http://esm.mi.ingv.it. Accessed 16 December 2016
  24. 24.
    Seismosignal (Version 4.0.0) (2010). Seismosoft Ltd, PaviaGoogle Scholar
  25. 25.
    García-Mayordomo J, Insua-Arévalo JM (2011) Seismic hazard assessment for the Itoiz dam site (Western Pyrenees, Sapin). Soil Dyn Earthq Eng 31:1051–1063.  https://doi.org/10.1016/j.soildyn.2011.03.011 CrossRefGoogle Scholar
  26. 26.
    Gaspar-Escribano JM, Navarro M, Benito B, García-Jerez A, Vidal F (2010) From regional- to local-scale seismic hazard assessment: examples from Southern Spain. Bull Earthq Eng 8:1547–1567.  https://doi.org/10.1007/s10518-010-9191-9 CrossRefGoogle Scholar
  27. 27.
    SNCZI-Inventario de Presas y Embalses (2017). http://sig.mapama.es/snczi/visor.html
  28. 28.
    Sap2000 (Version 16.0.0 Plus) (2013) Computers and Structures, Inc, California/New YorkGoogle Scholar
  29. 29.
    Durieux JH, Van Rensburg BWJ (2016) Development of a practical methodology for the analysis of gravity dams using the non-linear finite element method. J S Afr Inst Civil Eng 58(2):2–13CrossRefGoogle Scholar
  30. 30.
    Khosravi S, Heydari MM (2013) Modelling of concrete gravity dam including dam-water-foundation rock interaction. World Appl Sci J 22(4):538–546.  https://doi.org/10.5829/idosi.wasj.2013.22.04.551 Google Scholar
  31. 31.
    Kaveh A, Ghaffarian R (2015) Shape optimization of arch dams with frequency constraints by enhanced charged system search algorithm and neural network. Int J Civil Eng 13(1):102–111.  https://doi.org/10.22068/IJCE.13.1.102 Google Scholar
  32. 32.
    Chakrabarti P, Chopra AK (1973) Earthquake analysis of gravity dams including hydrodynamic interaction. Earthq Eng Struct Dyn 2:143–160.  https://doi.org/10.1002/eqe.4290020205 CrossRefGoogle Scholar
  33. 33.
    García F, Aznárez JJ, Padrón LA, Maeso O (2016) Relevance of the incidence angle of the seismic waves on the dynamic response of arch dams. Soil Dyn Earthq Eng 90:442–453CrossRefGoogle Scholar
  34. 34.
    Tarinejad R, Pirboudaghi S (2015) Legendre spectral element method for seismic analysis of dam-reservoir- interaction. Int J Civil Eng 13(2):148–159.  https://doi.org/10.22068/IJCE.13.2.148 Google Scholar
  35. 35.
    Wang G, Wang Y, Lu W, Yan P, Zhou W, Chen M (2016) A general definition of integrated strong motion duration and its effect on seismic demands of concrete gravity dams. Eng Struct 125:481–493CrossRefGoogle Scholar
  36. 36.
    Hariri-Ardebili MA, Mirzabozorg H, Kianoush R (2014) Comparative study of endurance time and time history methods in seismic analysis of high arch dams. Int J Civil Eng 12(2):219–236Google Scholar
  37. 37.
    Peláez JA, Delgado J, López Casado C (2005) A preliminary probabilistic seismic hazard assessment in terms of Arias intensity in southeastern Spain. Eng Geol 77:139–151.  https://doi.org/10.1016/j.enggeo.2004.09.002 CrossRefGoogle Scholar
  38. 38.
    Millán MA, Young YL, Prévost JH (2002) The effects of reservoir geometry on the seismic response of gravity dams. Part 1: Analytical model. Earthq Eng Struct Dyn 00:1–6Google Scholar
  39. 39.
    Leclerc M, Léger P, Tinawi R (2004) Cadam (Version 1.4.14). CRSNG/Hydro-Québec/Alcan, MontréalGoogle Scholar
  40. 40.
    European Committee for Standardization (2004) Design of concrete structures. Part 1–1: general rules and rules for buildings. CEN, BrusselsGoogle Scholar
  41. 41.
    Alembagheri M (2016) Earthquake damage estimation of concrete gravity dams using linear analysis and empirical failure criteria. Soil Dyn Earthq Eng 90:327–339CrossRefGoogle Scholar
  42. 42.
    Zacchei E, Molina JL, LRF Brasil MR (2017) Seismic hazard and structural analysis of the concrete arch dam (Rules dam on Guadalfeo River). Procedia Eng 199:1332–1337.  http://dx.doi.org/10.1016/j.proeng.2017.09.334 CrossRefGoogle Scholar
  43. 43.
    Joshi SG, Gupta ID, Murnal PB (2015) Analyzing the effect of foundation inhomogeneity on the seismic response of gravity dams. Int J Civil Struct Eng 6(1):11–24.  https://doi.org/10.6088/ijcser.6002 Google Scholar

Copyright information

© Iran University of Science and Technology 2017

Authors and Affiliations

  • Enrico Zacchei
    • 1
  • José Luis Molina
    • 1
  • Reyolando Manoel Lopes Rebello da Fonseca Brasil
    • 2
  1. 1.Higher Polytechnic School of ÁvilaUniversity of Salamanca (USAL)ÁvilaSpain
  2. 2.Polytechnic School of São PauloUniversity of São Paulo (USP)São PauloBrazil

Personalised recommendations