Skip to main content

Advertisement

Log in

Properties of Plain Concrete Produced Employing Recycled Aggregates and Sea Water

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

The generation of construction and demolition waste (C&DW) is a noteworthy environmental and economic concern. The development of new applications in which Recycled Mixed Aggregates (RMA) can be used will lead to a reduction of landfills growth. Moreover, the use of seawater shall represent another advance in sustainability due to the consequent reduction of fresh water consumption, which can be a limited resource in certain areas. Although seawater is not generally recommended for concrete production, especially in reinforced concretes, seawater could be a viable replacement for fresh water in the production of plain concretes. This study intends to analyse the possibility of using RMA and seawater in the production of concrete to be used in port sites. This study is based on three different parameters: cement class, water source and RMA content. The results highlighted the beneficial effects of using type III cement, especially with regard to durability properties. The concretes produced employing RMA and type III cement achieved lower value of sorptivity coefficient and higher values of ultrasonic pulse velocity (UPV), chloride ion penetration resistance and electrical resistivity than those produced with natural aggregates and type I cement. Moreover, the use of seawater in concretes with type III cement not only produced higher density and lower absorption capacity but also higher mechanical properties by creating a denser cement matrix, which proved to suffer low decrease by RMA addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Eurostat (2012) Waste statistics in Europe. http://ec.europa.eu/eurostat/documents/3217494/5760493/CH_11_2012-EN.PDF/57664e0e-9271-4e72-872ae6174c7ab134. Accessed 6 Feb 2013

  2. Angulo SC, Carrijo PM, Figueiredo AD, Chaves AP, John VM (2010) On the classification of mixed construction and demolition waste aggregate by porosity and its impact on the mechanical performance of concrete. Mater Struct 43:519–528

    Article  Google Scholar 

  3. Agrela F, Sánchez de Juan M, Ayuso J, Geraldes VL, Jiménez JR (2011) Limiting properties in the characterisation of mixed recycled aggregates for use in the manufacture of concrete. Constr Build Mater 25:3950–3955. doi:10.1016/j.conbuildmat.2011.04.027

    Article  Google Scholar 

  4. Silva RV, de Brito J, Dhir RK (2014) Properties and composition of recycled aggregates from construction and demolition waste suitable for concrete production. Constr Build Mater 65:201–217. doi:10.1016/j.conbuildmat.2014.04.117

    Article  Google Scholar 

  5. Mas B, Cladera A, del Olmo T, Pitarch F (2012) Influence of the amount of mixed recycled aggregates on the properties of concrete for non-structural use. Constr Build Mater 27:612–622. doi:10.1016/j.conbuildmat.2011.06.073

    Article  Google Scholar 

  6. Martínez-Lage I, Martínez-Abella F, Vázquez-Herrero C, Pérez-Ordóñez JL (2012) Properties of plain concrete made with mixed recycled coarse aggregate. Constr Build Mater 37:171–176. doi:10.1016/j.conbuildmat.2012.07.045

    Article  Google Scholar 

  7. Hoffmann C, Schubert S, Leemann A, Motavalli M (2012) Recycled concrete and mixed rubble as aggregates: influence of variations in composition on the concrete properties and their use as structural material. Constr Build Mater 35:701–709. doi:10.1016/j.conbuildmat.2011.10.007

    Article  Google Scholar 

  8. Gonzalez-Corominas A, Etxeberria M (2014) Properties of high performance concrete made with recycled fine ceramic and coarse mixed aggregates. Constr Build Mater 68:618–626. doi:10.1016/j.conbuildmat.2014.07.016

    Article  Google Scholar 

  9. Poon CS, Shui ZH, Lam L, Fok H, Kou SC (2004) Influence of moisture states of natural and recycled aggregates on the slump and compressive strength of concrete. Cem Concr Res 34:31–36. doi:10.1016/S0008-8846(03)00186-8

    Article  Google Scholar 

  10. Gonzalez-Corominas A, Etxeberria M (2014) Experimental analysis of properties of high performance recycled aggregate concrete. Constr Build Mater 52:227–235. doi:10.1016/j.conbuildmat.2013.11.054

    Article  Google Scholar 

  11. Nishida T, Otsuki N, Ohara H, Garba-Say ZM, Nagata T (2015) Some considerations for applicability of seawater as mixing water in concrete. J Mater Civil Eng 27(7). doi:10.1061/(ASCE)MT.1943-5533.0001006

  12. Kaushik SK, Islam S (1995) Suitability of sea water for mixing structural concrete exposed to a marine environment. Cem Concr Compos 17:177–185. doi:10.1016/0958-9465(95)00015-5

    Article  Google Scholar 

  13. Mohammed TU, Hamada H, Yamaji T (2004) Performance of seawater-mixed concrete in the tidal environment. Cem Concr Res 34:593–601. doi:10.1016/j.cemconres.2003.09.020

    Article  Google Scholar 

  14. Otsuki N, Saito T, Tadokoro Y (2012) Possibility of sea water as mixing water in concrete. J Civil Eng Architect 6:1273–1279

    Google Scholar 

  15. Shi Z, Shui Z, Li Q, Geng H (2015) Combined effect of metakaolin and sea water on performance and microstructures of concrete. Constr Build Mater 74:57–64. doi:10.1016/j.conbuildmat.2014.10.023

    Article  Google Scholar 

  16. Neville AM (2000) Properties of concrete, Longman 981-4053-56-2. Pearson Education Asia

  17. Florea MVA, Brouwers HJH (2012) Chloride binding related to hydration products. Cem Concr Res 42:282–290. doi:10.1016/j.cemconres.2011.09.016

    Article  Google Scholar 

  18. Florea MVA, Brouwers HJH (2014) Modelling of chloride binding related to hydration products in slag-blended cements. Constr Build Mater 64:421–430. doi:10.1016/j.conbuildmat.2014.04.038

    Article  Google Scholar 

  19. EHE (2008) Instrucción del hormigón estructural (Spanish Concrete Structural Code)

  20. Etxeberria M, Gonzalez A, Valero I (2013) Application of low grade recycled aggregates for nonstructural concrete production in the city of Barcelona. In: Third international conference on sustainable construction materials and technologies set for Kyoto, Japan, August 2013

  21. Etxeberria M, Fernandez JM, Limeira J (2016) Secondary aggregates and sea water employment for sustainable concrete dyke blocks production: case study. Constr Build Mater 113:586–595

    Article  Google Scholar 

  22. Aldea C-M, Young F, Wang K, Shah SP (2000) Effects of curing conditions on properties of concrete using slag replacement. Cem Concr Res 30:465–472. doi:10.1016/S0008-8846(00)00200-3

    Article  Google Scholar 

  23. Song H-W, Saraswathy V (2006) Studies on the corrosion resistance of reinforced steel in concrete with ground granulated blast-furnace slag–An overview. J Hazard Mater 138:226–233. doi:10.1016/j.jhazmat.2006.07.022

    Article  Google Scholar 

  24. Kou SC, Poon CS, Agrela F (2011) Comparisons of natural and recycled aggregate concretes prepared with the addition of different mineral admixtures. Cem Concr Compos 33:788–795. doi:10.1016/j.cemconcomp.2011.05.009

    Article  Google Scholar 

  25. Pepe M, Koenders EAB, Faella C, Martinelli E (2014) Structural concrete made with recycled aggregates: hydration process and compressive strength models. Mech Res Commun 58:139–145. doi:10.1016/j.mechrescom.2014.02.001

    Article  Google Scholar 

  26. Ajdukiewicz A, Kliszczewicz A (2002) Influence of recycled aggregates on mechanical properties of HS/HPC. Cem Concr Compos 24:269–279. doi:10.1016/S0958-9465(01)00012-9

    Article  Google Scholar 

  27. Tüfekçi MM, Çakır Ö (2017) An investigation on mechanical and physical properties of recycled coarse aggregate (RCA) concrete with GGBFS. Int J Civil Eng. doi:10.1007/s40999-017-0167-x

    Google Scholar 

  28. Dilbas H, Cakir Ö, Simsek M (2017) Recycled aggregate concretes (RACs) for structural use: an evaluation on elasticity modulus and energy capacities. Int J Civil Eng 15:247–261. doi:10.1007/s40999-016-0077-3

    Article  Google Scholar 

  29. Lydon F, Balendran R (1986) Some observations on elastic properties of plain concrete. Cem Concr Res 16:314–324

    Article  Google Scholar 

  30. Levy SM, Helene P (2004) Durability of recycled aggregates concrete: a safe way to sustainable development. Cem Concr Res 34:1975–1980. doi:10.1016/j.cemconres.2004.02.009

    Article  Google Scholar 

  31. Wirquin E, Zaharieva R, Buyle-Bodin F (2000) Use of water absorption by concrete as a criterion of the durability of concrete—application to recycled aggregate concrete. Mater Struct 33:403–408

    Article  Google Scholar 

  32. Hadjsadok A, Kenai S, Courard L, Michel F, Khatib J (2012) Durability of mortar and concretes containing slag with low hydraulic activity. Cem Concr Compos 34:671–677. doi:10.1016/j.cemconcomp.2012.02.011

    Article  Google Scholar 

  33. Kou S-C, Poon C-S, Wan H-W (2012) Properties of concrete prepared with low-grade recycled aggregates. Constr Build Mater 36:881–889. doi:10.1016/j.conbuildmat.2012.06.060

    Article  Google Scholar 

  34. Yiğiter H, Yazıcı H, Aydın S (2007) Effects of cement type, water/cement ratio and cement content on sea water resistance of concrete. Build Environ 42:1770–1776. doi:10.1016/j.buildenv.2006.01.008

    Article  Google Scholar 

  35. Bernal SA, Mejía de Gutiérrez R, Provis JL (2012) Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends. Constr Build Mater 33:99–108. doi:10.1016/j.conbuildmat.2012.01.017

    Article  Google Scholar 

  36. Langford J, Broomfiel P (1987) Monitoring the corrosion of reinforcing steel. Constr Repair 1:32–36

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support of The Ministry of Economy and Competitiveness of the Government of Spain (MINECO) for providing funds for the INNPACT project (IPT-2012-1093-310000) and also the European Regional Development Fund (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miren Etxeberria.

Ethics declarations

Funding

Ministerio de Economía y Competitividad. Award Number: IPT-2012-1093-310000 | Recipient: Miren Etxeberria, Dr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Etxeberria, M., Gonzalez-Corominas, A. Properties of Plain Concrete Produced Employing Recycled Aggregates and Sea Water. Int J Civ Eng 16, 993–1003 (2018). https://doi.org/10.1007/s40999-017-0229-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-017-0229-0

Keywords

Navigation