Skip to main content

Thermal Regime Analysis and Protective Measure Evaluation for Wide Embankment in Permafrost Regions of Qinghai-Tibet Plateau

Abstract

This study analyzed the effects of a wide embankment on the thermal regime of permafrost and evaluated the feasibility of different measures to protect the permafrost underlying the wide embankment. Based on a specific embankment section of the Qinghai-Tibet highway and field observed data, a finite-element model was built and verified to conduct thermal analysis. Based on numerical analysis, the temperature fields and thawing depths of embankments with different widths were analyzed. The influences of different protective measures on the thermal stability of embankments were evaluated. The findings indicate that, after embankment construction, the annual ground temperature and maximum thawing depth increase with time. Thus, the embankment construction causes serious disturbance of the thermal stability of permafrost. An embankment with a larger width has a lower thermal stability. The results also show that raising the embankment height, setting a crushed stone layer, or setting an expanded polystyrene (EPS) layer can improve the thermal stability of an embankment. However, the improving effect of a single protective measure is not obvious for wide embankments with widths larger than 26 m. A combination of a crushed stone layer and an EPS layer provides the best protective effect on the thermal stability of a wide embankment. Thus, it is recommended as a protective measure for wide embankments of expressways in permafrost regions of the Qinghai-Tibet Plateau.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. 1.

    Ma T, Zhong Y, Tang T, Huang X (2016) Design and evaluation of heat-resistant asphalt mixture for permafrost regions. Int J Civ Eng 14:339–346. doi:10.1007/s40999-016-0039-9

    Article  Google Scholar 

  2. 2.

    Tang T, Zha X, Xiao Q, Chen Y (2016) Laboratory characterization and field validation of ROADMESH-reinforced asphalt pavement in China. Int J Civ Eng. doi:10.1007/s40999-016-0128-9

    Article  Google Scholar 

  3. 3.

    Ma W, Cheng GD, Wu QB (2009) Construction on permafrost foundations: lessons learned from the Qinghai–Tibet railroad. Cold Reg Sci Technol 59(1):3–11

    Article  Google Scholar 

  4. 4.

    Zhang JW, Li J, Quan XJ (2013) Thermal stability analysis under embankment with asphalt pavement and cement pavement in permafrost regions. Sci World J 2013:1–12

    Google Scholar 

  5. 5.

    Ma W, Mu Y, Wu Q, Sun Z, Liu Y (2011) Characteristics and mechanisms of embankment deformation along the Qinghai–Tibet railway in permafrost regions. Cold Reg Sci Technol 67(3):178–186

    Article  Google Scholar 

  6. 6.

    Tian Y, Fang J, Shen Y (2013) Research on EPS application to very wide highway embankments in permafrost regions. Sci Cold Arid Reg 5(4):503–508

    Article  Google Scholar 

  7. 7.

    Peng H, Ma W, Mu YH, Jin L (2015) Impact of permafrost degradation on embankment deformation of Qinghai-Tibet highway in permafrost regions. J Cent South Univ 22:1079–1086

    Article  Google Scholar 

  8. 8.

    Wu Q, Niu F (2013) Permafrost changes and engineering stability in Qinghai-Xizang Plateau. Chin Sci Bull 58(10):1079–1094

    Article  Google Scholar 

  9. 9.

    Li JP, Sheng Y (2008) Analysis of the thermal stability of an embankment under different pavement types in high temperature permafrost regions. Cold Reg Sci Technol 54:120–123

    Article  Google Scholar 

  10. 10.

    Zheng B, Zhang J, Qin Y (2010) Investigation for the deformation of embankment underlain by warm and ice-rich permafrost. Cold Reg Sci Technol 60(2):161–168

    Article  Google Scholar 

  11. 11.

    Sheng Y, Zhang JM, Liu YZ, Wu JM (2002) Thermal regime in the embankment of Qinghai–Tibetan highway in permafrost regions. Cold Reg Sci Technol 35(1):35–44

    Article  Google Scholar 

  12. 12.

    Wu QB, Liu YZ, Zhang JM, Tong CJ (2002) A review of recent frozen soil engineering in permafrost regions along Qinghai–Tibet highway, China. Permafrost Periglac Process 13(3):199–205

    Article  Google Scholar 

  13. 13.

    Wang S, Niu F, Zhao L, Li S (2003) The thermal stability of roadbed in permafrost regions along Qinghai–Tibet highway. Cold Reg Sci Technol 37(1):25–34

    Article  Google Scholar 

  14. 14.

    Liu YZ, Wu QB, Zhang JM, Sheng Y (2002) Deformation of highway roadbed in permafrost regions of the Tibetan Plateau. J Glaciol Geocryol 24(1):10–15

    Google Scholar 

  15. 15.

    Wu QB, Mi HZ (2000) Predictions and control proposes of frozen ground under asphalt pavement at the high ground temperature section of the Qinghai–Xizang highway. Hydrogeol Eng Geol 27(2):14–17

    Google Scholar 

  16. 16.

    Yu QH, Liu YZ, Tong CJ (2002) Analysis of the subgrade deformation of the Qinghai-Tibetan highway. J Glaciol Geocryol 24(5):623–627

    Google Scholar 

  17. 17.

    Zhang C, Wang H, You Z, Ma B (2015) Sensitivity analysis of longitudinal cracking on asphalt pavement using MEPDG in permafrost region. J Traffic Transp Eng (English Edition) 2(1):40–47

    Article  Google Scholar 

  18. 18.

    Niu F, Cheng G, Ni W, Jin D (2005) Engineering-related slope failure in permafrost regions of the Qinghai-Tibet Plateau. Cold Reg Sci Technol 42(3):215–225

    Article  Google Scholar 

  19. 19.

    Wu Q, Zhang Z, Liu Y (2010) Long-term thermal effect of asphalt pavement on permafrost under an embankment. Cold Reg Sci Technol 60(3):221–229

    Article  Google Scholar 

  20. 20.

    Chen J, Sheng Y, Cheng GD (2006) Discussion on protection measures of permafrost under the action of engineering from the point of earth surface energy balance equation in Qinghai–Tibet Plateau. J Glaciol Geocryol 28:223–228

    Google Scholar 

  21. 21.

    Feng WJ, Ma W, Zhang LX, Wu ZJ (2003) Application of awning to roadway engineering in permafrost regions. J Geotech Geoenviron Eng 25:567–570

    Google Scholar 

  22. 22.

    Wang SJ (2008) Highway construction technology in the permafrost region of China. China Communications Press, Beijing

    Google Scholar 

  23. 23.

    Dong Y, Lai Y, Xu X, Zhang S (2010) Using perforated ventilation ducts to enhance the cooling effect of crushed-rock interlayer on embankments in permafrost regions. Cold Reg Sci Technol 62(1):76–82

    Article  Google Scholar 

  24. 24.

    Wu Q, Lu Z, Tingjun Z, Ma W, Liu Y (2008) Analysis of cooling effect of crushed rock-based embankment of the Qinghai–Xizang railway. Cold Reg Sci Technol 53:271–282

    Article  Google Scholar 

  25. 25.

    Pan Y, Wu CZ (2002) Numerical investigations and engineering applications on freezing expansion of soil restrained two-phase closed thermosyphons. Int J Therm Sci 41:341–347

    Article  Google Scholar 

  26. 26.

    Harlan RL (1973) Analysis of coupled heat-fluid transport in partially frozen soil. Water Resour Res 9(5):1314–1323

    Article  Google Scholar 

  27. 27.

    Taylor GS, Luthin JN (1978) A model for coupled heat and moisture transfer during soil freezing. Can Geotech J 15(4):548–555

    Article  Google Scholar 

  28. 28.

    Farouki OT (1981) The thermal properties of soils in cold regions. Cold Reg Sci Technol 5(1):67–75

    Article  Google Scholar 

  29. 29.

    Liu J, Tian Y (2002) Numerical studies for the thermal regime of a roadbed with insulation on permafrost. Cold Reg Sci Technol 35(1):1–13

    Article  Google Scholar 

Download references

Acknowledgements

The study is financially supported by the National Natural Science Foundation of China (No. 51378006), the National Science and Technology Support Program (2014BAG05B04), the Fundamental Research Funds for the Central Universities (No. 2242015R30027), and the Natural Science Foundation of Jiangsu Province (BK20161421).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Tao Ma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, T., Tang, T., Ding, X. et al. Thermal Regime Analysis and Protective Measure Evaluation for Wide Embankment in Permafrost Regions of Qinghai-Tibet Plateau. Int J Civ Eng 16, 1303–1316 (2018). https://doi.org/10.1007/s40999-017-0219-2

Download citation

Keywords

  • Permafrost region
  • Thermal regime
  • Wide embankment
  • Protective measure