Skip to main content

Numerical and Experimental Study of the Optimal Location of Concrete Piles in a Saturated Sandy Slope


The stability of a soil slope, reinforced by a concrete pile, is studied both experimentally and numerically in this work. Our study suggests that when the concrete pile is located in the middle of the slope (at x/r = 0.5), the soil structure collapses under a pressure of 10.9 kPa that is the highest overburden pressure to cause instability of the tested reinforced sandy slope. However, when the pile is located in the upslope (at x/r = 0.75) or downslope (at x/r = 0.25), the slope failure occurs under a pressure of 7.8 or 3.12 kPa, respectively. Therefore, our experimental work suggests that a pile located at the middle of the slope can provide the optimum reinforcement of the soil structure studied in this work. The nonlinear numerical modeling of the slope was conducted as well. The numerical study shows consistent results with those from the physical observation confirming that the slope mid-point is the optimum place for the slope reinforcement.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16


  1. 1.

    Poulos HG (1995) Design of reinforcing piles to increase slope stability. Can Geotech J 32(5):808–818. doi:10.1139/t95-078

    Article  Google Scholar 

  2. 2.

    Lee CY, Hull TS, Poulos HG (1995) Simplified pile-slope stability analysis. Comput Geotech 17:1–16. doi:10.1016/0266-352X(95)91300-S

    Article  Google Scholar 

  3. 3.

    Hull TS, Lee CY, Poulos HG (1991) Mechanics of pile reinforcement for unstable slopes. Research Report No. 636, School of Civil and Mining Engineering, University of Sydney, Australia

    Google Scholar 

  4. 4.

    Ito T, Matsui T (1975) Methods to estimate lateral force acting on stabilizing piles. Soils Found 15:43–59. doi:10.3208/sandf1972.15.4_43

    Article  Google Scholar 

  5. 5.

    Ito T, Matsui T, Hong WP (1979) Design method for the stability analysis of the slope with landing pier. Soils Found 19(4):43–57. doi:10.3208/sandf1972.19.4_43

    Article  Google Scholar 

  6. 6.

    Ito T, Matsui T, Hong WP (1981) Design method for stabilizing piles against landslide one row of piles. Soils Found 21(1):21–37. doi:10.3208/sandf1972.21.21

    Article  Google Scholar 

  7. 7.

    Hassiotis S, Chameau JL, Gunaratne M (1997) Design method for stabilization of slopes with piles. J Geotech Geoenviron Eng ASCE 123(4):314–323. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  8. 8.

    Cai F, Ugai K (2000) Numerical analysis of the stability of a slope reinforced with piles. Soils Found 40(1):73–84. doi:10.3208/sandf.40.73

    Article  Google Scholar 

  9. 9.

    Ausilio E, Conte E, Dente G (2001) Stability analysis of slopes reinforced with piles. Comput Geotech 28:591–611. doi:10.1061/40863(195)8

    Article  Google Scholar 

  10. 10.

    Won J, You K, Jeong S, Kim S (2005) Coupled effects in stability analysis of pile-slope systems. Comput Geotech 32:304–315. doi:10.1016/j.compgeo.2005.02.006

    Article  Google Scholar 

  11. 11.

    Nian TK, Chen GQ, Luan MT, Yang Q, Zheng DF (2008) Limit analysis of the stability of slopes reinforced with piles against landslide in nonhomogeneous and anisotropic soils. Can Geotech J 45(8):1092–1103. doi:10.1139/T08-042

    Article  Google Scholar 

  12. 12.

    Wei WB, Cheng YM (2009) Strength reduction analysis for slope reinforced with one row of piles. Comput Geotech 36:1176–1185. doi:10.1016/j.compgeo.2009.05.004

    Article  Google Scholar 

  13. 13.

    Kourkoulis R, Gelagoti F, Anastasopoulos I, Gazetas G (2012) Hybrid method for analysis and design of slope stabilizing piles. J Geotech Geoenviron Eng 138(1):1–14. doi:10.1061/(ASCE)GT.1943-5606.0000546

    Article  Google Scholar 

  14. 14.

    Xinpo Li, Xiangjun P, Marte G, Siming H (2012) Optimal location of piles in slope stabilization by limit analysis. Acta Geotech 7:253–259. doi:10.1007/s11440-012-0170-y

    Article  Google Scholar 

  15. 15.

    Sun SW, Zhu BZ, Wang JC (2013) Design method for stabilization of earth slopes with micropiles. Soils Found 53(4):487–497. doi:10.1016/j.sandf.2013.06.002

    Article  Google Scholar 

  16. 16.

    Jagodnik V, Arbanas Z (2015) Testing of laterally loaded piles in natural sandy gravels. Int J Phys Model Geotech 15(4):191–208. doi:10.1680/jphmg.14.00010

    Article  Google Scholar 

  17. 17.

    Askarinejad A (2013) Failure mechanisms in unsaturated silty sand slopes triggered by rainfall. Ph.D thesis for doctor of sciences, No. 21423, ETH Zurich

  18. 18.

    Hajiazizi M, Mazaheri AR (2015) Use of line segments slip surface for optimized design of piles in stabilization of the earth slopes. Int J Civil Eng 3(1):14–27

    Google Scholar 

  19. 19.

    Hajiazizi M, Tavana H (2013) Determining three-dimensional non-spherical critical slip surface in earth slopes using an optimization method. Eng Geol 153:114–124

    Article  Google Scholar 

  20. 20.

    Heidarzadeh M, Mirghasemi AA, Sadr Lahijani SM (2013) Application of cement grouting for stabilization of coarse materials. Int J Civil Eng 1(11):71–77

    Google Scholar 

  21. 21.

    Nazari Afshar J, Ghazavi M (2014) A simple analytical method for calculation of bearing capacity of stone-column. Int J Civil Eng 1(12):15–25

    Google Scholar 

  22. 22.

    Mosallanezhad M, Sadat Taghavi SH, Hataf N, Alfaro MC (2016) Experimental and numerical studies of the performance of the new reinforcement system under pull-out conditions. Geotext Geomembr 44:70–80. doi:10.1016/j.geotexmem.2015.07.006

    Article  Google Scholar 

  23. 23.

    Mosallanezhad M, Alfaro MC, Hataf, N, Sadat Taghavi SH (2016) Performance of the new reinforcement system in the increase of shear strength of typical geogrid interface with soil. Geotext Geomembr 44(3):457–462. doi:10.1016/j.geotexmem.2015.07.005

    Article  Google Scholar 

  24. 24.

    Sadeghi K (2017) Nonlinear numerical simulation of reinforced concrete columns under cyclic biaxial bending moment and axial loading. International Journal of Civil Engineering 15(1):113–124. doi:10.1007/s40999-016-0046-x

    Article  Google Scholar 

  25. 25.

    Yang F, Cao S, Qin G. (2017) Performance of the prestressed composite lining of a tunnel: case study of the Yellow river crossing tunnel. Int J Civil Eng. doi:10.1007/s40999-016-0124-0

    Article  Google Scholar 

  26. 26.

    Plaxis Company (2003) Geotechnical software, PLAXIS 2D V.8. Netherland

  27. 27.

    Harris HG, Sabnis G (1999) Structural modeling and experimental techniques, 2nd edn. CRC, New York

  28. 28.

    Vesic AS (1973) Analysis of ultimate loads of shallow foundations. J Soil Mech Found 99(1):45–73. doi:10.1016/0148-9062(74)90598-1

    Article  Google Scholar 

  29. 29.

    Sawwaf M (2015) Strip footing behavior on pile and sheet pile-stabilized sand slope. J Geotech Geoenviron Eng ASCE 131(6): 705–715. doi:10.1061/(ASCE)1090-0241(2005)131

    Article  Google Scholar 

  30. 30.

    Hegde AM, Sitharam TG (2015) Experimental and numerical studies on protection of buried pipe line sand underground utilities using geocells. Geotext Geomembr 43(5):372–381. doi:10.1016/j.geotexmem.2015.04.010

    Article  Google Scholar 

  31. 31.

    Fakher A, Jones CJFP (2009) Discussion on bearing capacity of rectangular footings on geogrid reinforced sand by Yetimoglu T, Wu JTH, Saglamer A 1994. J Geotech Eng 122:326–327

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Mohammad Hajiazizi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hajiazizi, M., Bavali, M. & Fakhimi, A. Numerical and Experimental Study of the Optimal Location of Concrete Piles in a Saturated Sandy Slope. Int J Civ Eng 16, 1293–1301 (2018).

Download citation


  • Slope reinforcement
  • Optimal pile location
  • Concrete pile
  • Sandy slope