Skip to main content

Correlations Between Electrical Resistivity and Geotechnical Parameters for Jiangsu Marine Clay Using Spearman’s Coefficient Test


The correlations and relationships between electrical resistivity and geotechnical parameters of soils have become very important for site investigation. However, there is a lack of understanding about the relationships between electrical resistivity and geotechnical parameter values. The resistivity piezocone penetration tests and laboratory tests have been conducted for geotechnical investigations of marine clay in Jiangsu province of China to establish quantitative relationships between electrical and geotechnical data. The geotechnical investigation reveals that electrical resistivity values are very low for marine clay in Jiangsu, ranging from 5 to 10 Ω m. The correlations between electrical resistivity and geotechnical parameters are examined using Spearman’s rank correlation test that is a rank-based test for correlation between two variables without any assumption about the data distribution. It was shown that the electrical resistivity has strong bonds with the moisture content, void ratio, salt content and plasticity index. In terms of quantitative relationships, good fitting relationships between electrical resistivity and selected geotechnical parameters are observed. The statistical analysis indicates that the electrical resistivity is a good indirect predictor of selected geotechnical parameters. The data studied demonstrates the usefulness of the in situ resistivity method in geotechnical investigations, which have an advantage over other geotechnical methods in cost performance.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Sudha K, Israil M, Mittal S, Rai J (2009) Soil characterization using electrical resistivity tomography and geotechnical investigations. J Appl Geophys 67(1):74–79

    Article  Google Scholar 

  2. 2.

    Fard MK, Shariatmadari N, Keramati M, Kalarijani HJ (2014) An experimental investigation on the mechanical behavior of MSW. Int J Civ Eng 12(4):292–303

    Google Scholar 

  3. 3.

    Kim JH, Yoon H, Lee J (2010) Void ratio estimation of soft soils using electrical resistivity cone probe. J Geotech Geoenviron Eng 137(1):86–93

    Article  Google Scholar 

  4. 4.

    Bathe A, Bryson LS (2009) Determination of selected geotechnical properties of soil using electrical conductivity testing. Geotechn Test J 32(3):252–261

    Google Scholar 

  5. 5.

    Khodaparast M, Rajabi A, Mohammadi M (2015) The new empirical formula based on dynamic probing test results in fine cohesive soils. Int J Civ Eng 13(2):105–113

    Google Scholar 

  6. 6.

    Ampadu SI, Arthur TD (2006) The dynamic cone penetrometer in compaction verification on a model road pavement. Geotech Test J 29(1):1–10

    Google Scholar 

  7. 7.

    Phoon KK, Quek ST, An P (2003) Identification of statistically homogeneous soil layers using modified Bartlett statistics. J Geotech Geoenviron Eng 129(7):649–659

    Article  Google Scholar 

  8. 8.

    Phoon KK, Quek ST, An P (2004) Geostatistical analysis of cone penetration test (CPT) sounding using the modified Bartlett test. Can Geotech J 41(2):356–365

    Article  Google Scholar 

  9. 9.

    Cai G, Zhang T, Puppala AJ, Liu S (2015) Thermal characterization and prediction model of typical soils in Nanjing area of China. Eng Geol 191:23–30

    Article  Google Scholar 

  10. 10.

    Gupta SC, Hanks RJ (1972) Influence of water content on electrical conductivity of the soil. Soil Sci Soc Am J 36(6):855–857

    Article  Google Scholar 

  11. 11.

    Kalinski RJ, Kelly WE (1993) Estimating water content of soils from electrical resistivity. Geotech Test J 16(3):323–329

    Article  Google Scholar 

  12. 12.

    Kibria G, Hossain MS (2012) Investigation of geotechnical parameters affecting electrical resistivity of compacted clays. J Geotech Geoenviron Eng 138(12):1520–1529

    Article  Google Scholar 

  13. 13.

    Long M, Donohue S, L’Heureux JS, Solberg IL, Rønning JS, Limacher R, Lecomte I (2012) Relationship between electrical resistivity and basic geotechnical parameters for marine clays. Can Geotech J 49(10):1158–1168

    Article  Google Scholar 

  14. 14.

    Cosenza P, Marmet E, Rejiba F, Cui YJ, Tabbagh A, Charlery Y (2006) Correlations between geotechnical and electrical data: a case study at Garchy in France. J Appl Geophys 60(3):165–178

    Article  Google Scholar 

  15. 15.

    Han T, Best AI, Sothcott J, North LJ, MacGregor LM (2015) Relationships among low frequency (2 Hz) electrical resistivity, porosity, clay content and permeability in reservoir sandstones. J Appl Geophys 112:279–289

    Article  Google Scholar 

  16. 16.

    Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science: a review. Soil Tillage Res 83:173–193

    Article  Google Scholar 

  17. 17.

    McCarter WJ (1984) The electrical resistivity characteristics of compacted clays. Géotechnique 34(2):263–267

    Article  Google Scholar 

  18. 18.

    McCarter WJ, Desmazes P (1997) Soil characterization using electrical measurements. Géotechnique 47(1):179–183

    Article  Google Scholar 

  19. 19.

    Abu-Hassanein ZS, Benson CH, Blotz LR (1996) Electrical resistivity of compacted clays. J Geotech Eng 122(5):397–406

    Article  Google Scholar 

  20. 20.

    Lundberg AB, Dijkstra J, Tol FV, Broere W (2012) Investigation of in situ soil density change by resistivity measurements. GeoCongress, ASCE, pp 2590–2597

  21. 21.

    Dijkstra J, Broere W, Van Tol AF (2012) Electrical resistivity method for the measurement of density changes near a probe. Géotechnique 62(8):721–725

    Article  Google Scholar 

  22. 22.

    Sreedeep S, Singh DN (2005) Estimating unsaturated hydraulic conductivity of fine-grained soils using electrical resistivity measurements. J ASTM Int 2(1):10–1520

    Google Scholar 

  23. 23.

    Gorman T, Kelly WE (1990) Electrical-hydraulic properties of unsaturated Ottawa sands. J Hydrol 118(1):1–18

    Article  Google Scholar 

  24. 24.

    Giao PH, Chung SG, Kim DY, Tanaka H (2003) Electric imaging and laboratory resistivity testing for geotechnical investigation of Pusan clay deposits. J Appl Geophys 52(4):157–175

    Article  Google Scholar 

  25. 25.

    Liu SY, Shao GH, Du YJ, Cai GJ (2011) Depositional and geotechnical properties of marine clays in Lianyungang, China. Eng Geol 121(1):66–74

    Article  Google Scholar 

  26. 26.

    Cai G, Puppala AJ, Liu S (2014) Characterization on the correlation between shear wave velocity and piezocone tip resistance of Jiangsu clays. Eng Geol 171:96–103

    Article  Google Scholar 

  27. 27.

    Cai G, Liu S, Puppala AJ (2012) Reliability assessment of CPTU-based pile capacity predictions in soft clay deposits. Eng Geol 141:84–91

    Article  Google Scholar 

  28. 28.

    ASTM Designation Standard D5778-12 (2012) Standard test method for electronic friction cone and piezocone penetration testing of soils. ASTM International, West Conshohocken, PA

  29. 29.

    Gautheir TD (2001) Detecting trends using Spearman’s rank correlation coefficient. Environ Forensics 2(4):359–362

    Article  Google Scholar 

  30. 30.

    Lehmann EL, D’abrera HJ (2006) Nonparametrics: statistical methods based on ranks. Springer, New York

    MATH  Google Scholar 

  31. 31.

    Myers JL, Well A, Lorch RF (2010) Research design and statistical analysis. Routledge, London

    Google Scholar 

  32. 32.

    Helsel DR, Hirsch RM (1992) Statistical methods in water resources, vol 49. Elsevier, Oxford

    Book  Google Scholar 

  33. 33.

    Zar JH (1972) Significance testing of the Spearman rank correlation coefficient. J Am Stat Assoc 67(339):578–580

    Article  MATH  Google Scholar 

  34. 34.

    Dahlin T, Larsson R, Leroux V, Svensson M, Wisén R (2001) Geofysik I släntstabilitetsutredningar. Swedish Geotechnical Institute, Report No. 62

  35. 35.

    Lunne T, Robertosn PK, Powell JJM (1997) Cone penetration testing in geotechnical practice. EF Spon, London

    Google Scholar 

  36. 36.

    Pozdnyakov AI, Pozdnyakova LA, Karpachevskii LO (2006) Relationship between water tension and electrical resistivity in soils. Eurasian Soil Sci 39(1):S78–S83

    Article  Google Scholar 

  37. 37.

    Mitchell JK (1993) Fundamentals of soil behavior. Wiley, New York

    Google Scholar 

  38. 38.

    Bryson LS (2005) Evaluation of geotechnical parameters using electrical resistivity measurements. Geofront ASCE GSP 133:1–12

    MathSciNet  Google Scholar 

  39. 39.

    Gay DA, Morgan FD, Vichabian Y, Sogade JA, Reppert P, Wharton AE (2006) Investigations of andesitic volcanic debris terrains: part 2-geotechnical. Geophysics 71:B9–B15

    Article  Google Scholar 

Download references


Majority of the work presented in this paper was funded by the Foundation for the New Century Excellent Talents of China (Grant No. NCET-13-0118), the Foundation of Jiangsu Province Outstanding Youth (Grant No. BK20140027), the Foundation for the Author of National Excellent Doctoral Dissertation of PR China (Grant No. 201353), the High Level Talent Project of Peak of Six Talents in Jiangsu Province (Grant No. 2015-ZBZZ-001). the Fundamental Research Funds for the Central Universities (Grant No. 2242016K41062). These financial supports are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Guojun Cai.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, J., Cai, G., Liu, S. et al. Correlations Between Electrical Resistivity and Geotechnical Parameters for Jiangsu Marine Clay Using Spearman’s Coefficient Test. Int J Civ Eng 15, 419–429 (2017).

Download citation


  • Resistivity piezocone penetration test
  • Marine clay
  • Electrical resistivity
  • Geotechnical parameters
  • Spearman’s rank correlation