Skip to main content

Efflorescence Formation and Control in Alkali-Activated Phosphorus Slag Cement

Abstract

Efflorescence formation is an important soundness issue to be considered with alkali-activated cements. In this study, the impact of activator type on the efflorescence formation severity and methods of efflorescence reduction in alkali-activated phosphorus slag cement are investigated. Different alkaline activators including NaOH, KOH and liquid sodium silicate of different silica modules (Ms = SiO2/Na2O) were used for alkali-activation of phosphorus slag. Additions of high alumina cements (Secar 71 and 80) and application of hydrothermal curing condition at 85 °C for 7 h with different pre-curing times (1, 3 and 7 days) in humid environment (relative humidity of 95 %) and 25 °C were used for efflorescence control in alkali-activated phosphorus slag cement. Sodium containing activators resulted in more severe efflorescence formation compared with those of potassium containing activators. Also presence of liquid sodium silicate intensified efflorescence formation. Based on the results obtained, application of an optimum pre-curing stage in humid environment before hydrothermal curing regime stabilizes the cement matrix and improves the effectiveness of hydrothermal conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. 1.

    Allahverdi A, Mahinroosta M (2014) A model for prediction of compressive strength of chemically activated high phosphorous slag content cement. Int J Civil Eng 12(4 and A):481–487

    Google Scholar 

  2. 2.

    Allahvedi A, Hashemi H (2015) Investigating the resistance of alkali-activated slag mortar exposed to magnesium sulfate attack. Int J Civil Eng 13(4 and A):379–387

    Google Scholar 

  3. 3.

    Nwaubani S (2014) Hydration kinetics, pore characteristics and chloride ion diffusivity of blended cements. Int J Civil Eng 12(3 and A):354–362

    Google Scholar 

  4. 4.

    Pacheco-Torgal F, Castro-Gomes JO, Jalali S (2008) Alkali-activated binders: a review part 1. Hist Backgr Terminol React Mech Hydr Prod Constr Build Mater 22(7):1305–1314

    Google Scholar 

  5. 5.

    Torgal FP, Jalali S (2011) Eco-efficient construction and building materials. Springer, Berlin

    Book  Google Scholar 

  6. 6.

    Shi C, Krivenko PV, Roy DM (2006) Alkali-activated cements and concretes. Taylor & Francis, London

    Book  Google Scholar 

  7. 7.

    Altan E, Erdogan ST (2012) Alkali activation of a slag at ambient and elevated temperatures. Cement Concr Compos 34(2):131–139

    Article  Google Scholar 

  8. 8.

    Atis CD, Bilim C, Celik O, Karahan O (2009) Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater 23(1):548–555

    Article  Google Scholar 

  9. 9.

    Aydın S, Baradan B (2012) Mechanical and microstructural properties of heat cured alkali-activated slag mortars. Mater Des 35:374–383

    Article  Google Scholar 

  10. 10.

    Fernandez-Jimenez A, Puertas F, Sobrados I, Sanz J (2003) Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J Am Ceram Soc 86(8):1389–1394

    Article  Google Scholar 

  11. 11.

    Glukhovsky V, Rostovskaja G, Rumyna G (1980) High strength slag alkaline cements. In: Seventh international congress on the chemistry of cement, pp 164–168

  12. 12.

    Bernal SA, Provis JL, Rose V, Gutierrez RMD (2011) Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cement Concr Compos 33(1):46–54

    Article  Google Scholar 

  13. 13.

    Li C, Sun H, Li L (2010) A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res 40(9):1341–1349

    Article  Google Scholar 

  14. 14.

    Rovnaník P (2010) Effect of curing temperature on the development of hard structure of metakaolin-based geopolymer. Constr Build Mater 24(7):1176–1183

    Article  Google Scholar 

  15. 15.

    Siddique R, Klaus J (2009) Influence of metakaolin on the properties of mortar and concrete: a review. Appl Clay Sci 43(3–4):392–400

    Article  Google Scholar 

  16. 16.

    Fernandez-Jimenez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35(10):1984–1992

    Article  Google Scholar 

  17. 17.

    Jaarsveld JGSV, Deventer JSJV, Lukey GC (2003) The characterisation of source materials in fly ash-based geopolymers. Mater Lett 57(1):1272–1280

    Article  Google Scholar 

  18. 18.

    Palomo A, Grutzek MW, Blanco MT (1999) Alkali-activated fly ashes. A cement for the future. Cem Concr Res 29(8):1323–1329

    Article  Google Scholar 

  19. 19.

    Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM (2010) The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res 40(2):189–196

    Article  Google Scholar 

  20. 20.

    Najafikani E, Allahverdi A (2009) Effect of chemical composition on basic engineering properties of inorganic polymeric binder based on natural pozzolan. Ceram Silik 53(3):195–204

    Google Scholar 

  21. 21.

    Najafikani E, Allahverdi A (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci 44(12):3088–3097

    Article  Google Scholar 

  22. 22.

    Sajedi F, Razak HA (2010) The effect of chemical activators on early strength of ordinary Portland cement-slag mortars. Constr Build Mater 24(10):1944–1951

    Article  Google Scholar 

  23. 23.

    Puertas F, Fernandez-Jimenez A (2003) Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem Concr Compos 25(3):287–292

    Article  Google Scholar 

  24. 24.

    Gao X, Yu QL, Brouwers HJH (2015) Properties of alkali activated slag–fly ash blends with limestone addition. Cem Concr Compos. 59:119–128

    Article  Google Scholar 

  25. 25.

    Allahverdi A, Kani EN (2013) Use of construction and demolition waste (CDW) for alkali-activated or geopolymer cements. In: Pacheco-Torgal F, Tam V, Labrincha J, Ding Y, de Brito J (eds) Handbook of recycled concrete and demolition waste. Woodhead Publishing, Cambridge, pp 439–475

    Chapter  Google Scholar 

  26. 26.

    Najafikania E, Allahverdib A, Provis JL (2012) Efflorescence control in geopolymer binders based on natural pozzolan. Cem Concr Compos 34(1):25–33

    Article  Google Scholar 

  27. 27.

    Bernal SA, Gutierrez RMD, Provis JL, Rose V (2010) Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem Concr Res 40(6):898–907

    Article  Google Scholar 

  28. 28.

    Criado M, Palomo A, Fernández-Jiménez A (2005) Alkali activation of fly ashes. Part 1: effect of curing conditions on the carbonation of the reaction products. Fuel 84(16):2048–2054

    Article  Google Scholar 

  29. 29.

    Dow C, Glasser FP (2003) Calcium carbonate efflorescence on Portland cement and building materials. Cem Concr Res 33(1):147–154

    Article  Google Scholar 

  30. 30.

    Brocken H, Nijland TG (2004) White efflorescence on brick masonry and concrete masonry blocks, with special emphasis on sulfate efflorescence on concrete blocks. Constr Build Mater 18(5):315–323

    Article  Google Scholar 

  31. 31.

    Backbier L, Rousseau J, Bart JCJ (1993) Analytical study of salt migration and efflorescence in a mediaeval cathedral. J Franklin Inst 283(2):855–867

    Google Scholar 

  32. 32.

    Merrigan PEM (1986) Efflorescence: cause and control. Masonry Soc J 1986:1–4

    Google Scholar 

  33. 33.

    Škvára F, Kopecký L, Myšková L, Šmilauer V, Alberovská L, Vinšová L (2009) Aluminosilicate polymers—influence of elevated temperatures. Effloresc Ceram Silik 53(4):276–282

    Google Scholar 

  34. 34.

    Škvára F, Šmilauer V, Hlaváček P, Kopecký L, Cílová Z (2012) A weak alkali bond in (N, K)–A–S–H gels: evidence from leaching and modeling. Ceram Silik 56(4):374–382

    Google Scholar 

  35. 35.

    Maghsoodloorad H, Khaliliamiri H, Allahverdi A, Lachemi M, Hossain KMA (2014) Recycling phosphorus slag as a precursor for alkali-activated binder. Impact of type and dosage of activator. Ceram Silik 58(3):227–236

    Google Scholar 

  36. 36.

    Shi C, Li Y (1989) Investigation on some factors affecting the characteristics of alkali-phosphorus slag cement. Cem Concr Res 19(4):527–533

    Article  Google Scholar 

  37. 37.

    Wang S-D, Scrivener KL, Pratt PL (1994) Factors affecting the strength of alkali-activated slag. Cem Concr Res 24(6):1033–1043

    Article  Google Scholar 

  38. 38.

    Qian G, Bai S, Ju S, Huang T (2013) Laboratory evaluation on recycling waste phosphorus slag as the mineral filler in hot mix asphalt. J Mater Civ Eng 25(7):846–850

    Article  Google Scholar 

  39. 39.

    Chang JJ (2003) A study on the setting characteristics of sodium silicate-activated slag pastes. Cem Concr Res 33(7):1005–1011

    Article  Google Scholar 

  40. 40.

    ASTM C230/C230 M-14 (2014) Standard specification for flow table for use in tests of hydraulic cement. In: ASTM international, West Conshohocken, PA

  41. 41.

    Škvára F, Kopecký L, Šmilauer V, Bittnarb Z (2009) Material and structural characterization of alkali activated low-calcium brown coal fly ash. J Hazard Mater 168(2–3):711–720

    Google Scholar 

  42. 42.

    Bonk F, Schneider J, Cincotto MA, Panepucci H (2003) Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes. J Am Ceram Soc 86(10):1712–1719

    Article  Google Scholar 

  43. 43.

    Lee SK, Stebbins JF (2003) The distribution of sodium ions in aluminosilicate glasses: a high-field Na-23 MAS and 3Q MAS NMR study. Geochim Cosmochim Acta 67(9):699–1709

    Article  Google Scholar 

  44. 44.

    Allahverdi A, Škvára F (2001) Nitric acid attack on hardened paste of geopolymeric cements part I. Ceram Silik 45(3):81–88

    Google Scholar 

  45. 45.

    Allahverdi A, Škvára F (2001) Nitric acid attack on hardened paste of geopolymeric cements. Part II. Ceram Silik 45(4):143–149

    Google Scholar 

  46. 46.

    Hardjito D, Rangan BV (2005) Development and properties of low-calcium fly ash-based geopolymer concrete. Research Report GC 1. Curtin University of Technology, Perth

  47. 47.

    Hlavacek P (2014) Engineering properties of alkali activated composites. Czech Technical University in Prague (2014)

  48. 48.

    Puertas F, Palaciosc M, Manzanod H, Doladod JS, Ricof A, Rodríguezf J (2011) Model for the C–A–S–H gel formed in alkali-activated slag cements. J Eur Ceram Soc 31(12):2043–2056

    Article  Google Scholar 

  49. 49.

    Clayden NJ, Esposito S, Aronne A, Pernice P (1999) Solid state 27Al NMR and FTIR study of lanthanum aluminosilicate glasses. J Non-Cryst Solids 258(1–3):11–19

    Article  Google Scholar 

  50. 50.

    Lee TC, Li ZS (2014) Conditioned MSWI ash-slag-mix as a replacement for cement in cement mortar. Constr Build Mater 24(6):970–979

    Article  Google Scholar 

  51. 51.

    Deja J (2002) Immobilization of Cr6+, Cd2+, Zn2+ and Pb2+ in alkali-activated slag binders. Cem Concr Res 32(12):1971–1979

    Article  Google Scholar 

  52. 52.

    Sakulich AR, Anderson E, Schauer C, Barsoum MW (2009) Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Constr Build Mater 23(8):2951–2957

    Article  Google Scholar 

  53. 53.

    García Alcocel E, Garcés P, Chinchón S (2000) General study of alkaline hydrolysis in calcium aluminate cement mortars under a broad range of experimental conditions. Cem Concr Res 30(11):1689–1699

    Article  Google Scholar 

  54. 54.

    Taylor HFW (1997) Cement chemistry. Thomas Telford, UK

    Book  Google Scholar 

  55. 55.

    Lecomte I, Henrista C, Liégeoisa M, Maserib F, Rulmonta A, Clootsa R (2006) (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J Eur Ceram Soc 26(16):3789–3797

    Article  Google Scholar 

  56. 56.

    Bapat JD (2012) Mineral admixtures in cement and concrete. Taylor & Francis, Park Drive

    Book  Google Scholar 

  57. 57.

    Schneidera J, Cincottob MA, Panepucci H (2001) 29Si and 27Al high-resolution NMR characterization of calcium silicate hydrate phases in activated blast-furnace slag pastes. Cem Concr Res 31(7):993–1001

    Article  Google Scholar 

  58. 58.

    Richardson IG, Brough AR, Groves GW, Dobson CM (1994) The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C–S–H) phase. Cem Concr Res 24(5):813–829

    Article  Google Scholar 

  59. 59.

    Talling B, Brandstetr J (1989) Present state and future of alkali-activated slag concretes. In: 3rd inter conf on fly-ash, silica fume, slag and natural Pozzalans in concrete, Norway, pp 1519–1546

  60. 60.

    Li J, Yu Q, Wei J (2011) Structural characteristics and hydration kinetics of modified steel slag. Cem Concr Res 41(3):324–329

    Article  Google Scholar 

  61. 61.

    Taher MA (2007) Influence of thermally treated phosphogypsum on the properties of Portland slag cement. Conserv Recycl 52(1):28–38

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ali Allahverdi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maghsoodloorad, H., Allahverdi, A. Efflorescence Formation and Control in Alkali-Activated Phosphorus Slag Cement. Int J Civ Eng 14, 425–438 (2016). https://doi.org/10.1007/s40999-016-0027-0

Download citation

Keywords

  • Efflorescence
  • Phosphorus slag
  • Alkali-activation
  • Hydrothermal curing