Skip to main content
Log in

ANN-Based MPPT Controller for PEM Fuel Cell Energized Interleaved Resonant PWM High Step Up DC-DC Converter with SVPWM Inverter Fed Induction Motor Drive

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

In this paper, ANN-based MPPT controller is implemented for Proton Exchange Membrane Fuel Cell (PEMFC) powered Interleaved Resonant PWM High Step Up (IRPHS) converter and SVPWM technique is used for three-phase voltage source inverter to reduce THD. The proposed system is energized using PEM Fuel cell (PEMFC) with variable temperature as its output voltage is highly dependent on operating temperature. To extract maximum power during dynamic temperature, ANN-based MPPT controller is proposed. To control the speed of three induction motor, Voltage Source Inverter (VSI) is placed between IRPHS converter and induction motor. Space Vector Pulse Width Modulation (SVPWM) control technique is developed to switch VSI system which leads to reduced harmonic content, better utilization of dc link voltage, improved output voltage and controlled output current. The output voltage of VSI is connected with induction motor through split inductor, to analyze the various parameters of induction motor. The performance of the proposed system is simulated using MATLAB/Simulink and experimental results are verified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Figure. 24
Fig. 25
Fig. 26

Similar content being viewed by others

Abbreviations

ANN:

Artificial neural network

MPPT:

Maximum power point tracking

PEM:

Proton exchange membrane

PWM:

Pulse width modulation

SVPWM:

Space vector pulse width modulation

IRPHS:

Interleaved resonant PWM high step up converter

THD:

Total harmonic distortion

VSI:

Voltage source inverter

FPGA:

Field programmable gate array

ZVS:

Zero voltage switching

IC:

Internal combustion

RBFN:

Radial basis function network

PSO:

Particle swarm optimization

PID:

Proportional integration derivative

P&O:

Perturb and observe

SPWM:

Sinusoidal pulse width modulation

FLC:

Fuzzy logic controller

V fc :

Fuel cell voltage

I fc :

Fuel cell current

P o :

Fuel cell output power

V nom :

Fuel cell nominal voltage

I nom :

Fuel cell nominal current

V a, V b, V c :

Phase voltage from Three-phase inverter

S 1, S 2 :

Switches of IRPHS converter

H2 :

Hydrogen

O2 :

Oxygen

V G1, V G2 :

Gate pulses to IRPHS switches S1,S2

i Lf 1, i Lf 2 :

Current through Filter inductors Lf1,Lf2

V Lf 1 , V Lf 2 :

Voltage across Filter inductors Lf1,Lf2

i S1, i S2 :

Current through switches S1,S2

i cO 1, i cO 2 :

Current through output capacitors Co1,Co2

i Lr :

Current through resonant inductor Lr

ω res :

Resonant frequency

V c1, V c2 :

Voltage across arm capacitors C1,C2

V o 1, V o 2 :

Voltage across output capacitors Co1,Co2

d1, d 2 :

Duty cycles of switches S1, S2

f sw :

Switching frequency

P max :

Maximum output power of IRPHS converter

V BR(DSS) :

Drain-source breakdown voltage of switches S1,S2

I D :

Drain current of switches S1,S2

R DS(on) :

Drain-Source On state resistance of switches S1,S2

V RRM :

Repetitive maximum reverse voltage of diodes (D1-D4)

I F :

Forward RMS current of diode (D1-D4)

t rr :

Reverse recovery time of diode (D1-D4)

References

  • Abdi Sh, Afshar K, Bigdeli N, Ahmadi S (2012) A novel approach for robust maximum power point tracking of PEM fuel cell generator using sliding mode control approach. Int J Electrochem Sci 7:4192–4209

    Google Scholar 

  • Ahmadi S, Abdi Sh, Kakavand M (2017) Maximum power point tracking of a proton exchange membrane fuel cell system using PSO-PID controller. Int J Hydrogen Energy 42:20430–20443

    Article  Google Scholar 

  • Bahrami M et al (2019) Hybrid maximum power point tracking algorithm with improved dynamic performance. Renew Energy 130:982–991. https://doi.org/10.1016/j.renene.2018.07.020

    Article  Google Scholar 

  • Chen F, Gao Y (2015) An algorithm for on-line measurement of the internal resistance of proton exchange membrane fuel cell. Fuel Cells 15(2):337–343

    Article  Google Scholar 

  • Harrag A, Bahri H (2019) A novel single sensor variable step size maximum power point tracking for proton exchange membrane fuel cell power system. Fuel Cell. https://doi.org/10.1002/fuce.201800122

    Article  Google Scholar 

  • Harrag A, Messalti S (2017) How fuzzy logic can improve PEM fuel cell MPPT performances? Int J Hydrogen Energy 1–14

  • Harrag A, Bahri H (2017) Variable Step Size ICMPPT controller for PEMFC power system improving static and dynamic performances. Fuel Cells, pp. 1–9

  • Inci M, Trksoy O (2019) Review of fuel cells to grid interface: configurations, technical challenges and trends. J Clean Prod 213:1353e70

    Article  Google Scholar 

  • Jyotheeswara Reddy K, Sudhakar N (2018a) Energy sources and multi-input DC-DC converters used in hybrid electric vehicle applications—a review. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.07.076

    Article  Google Scholar 

  • Park Y et al (2012) Nonisolated ZVZCS resonant PWM DC–DC converter for high step-up and high-power applications. IEEE Trans Power Electron. https://doi.org/10.1109/TPEL.2012.2187342

    Article  Google Scholar 

  • Rajasekar N, Jacob B, Balasubramanian K, Priya K, Sangeetha K, Babu TS (2015) Comparative study of PEM fuel cell parameter extraction using Genetic Algorithm. Ain Shams Eng J 6:1187–1194

    Article  Google Scholar 

  • Ramasamy P, Krishnasamy V (2020) SVPWM control strategy for a three phase five level dual inverter fed open-end winding induction motor. ISA Trans. https://doi.org/10.1016/j.isatra.2020.02.034

    Article  Google Scholar 

  • Reddy KJ, Sudhakar N (2018) A new RBFN based MPPT controller for grid-connected PEMFC system with high step-up three-phase IBC. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2018.07.177

    Article  Google Scholar 

  • Reddy KJ, Sudhakar N (2018b) High voltage gain interleaved boost converter with neural network-based MPPT controller for fuel cell based electric vehicle applications. IEEE Access 6:3899

    Article  Google Scholar 

  • Reddy KJ, Sudhakar N (2019) ANFIS-MPPT control algorithm for a PEMFC system used in electric vehicle applications. Int J Hydrogen Energy. https://doi.org/10.1016/j.ijhydene.2019.04.054

    Article  Google Scholar 

  • Sammes N (2006) Fuel cell technology, reaching towards commercialization. Springer-Verlag London Limited, London

    Google Scholar 

  • Somaiah B et al (2016) Distributed maximum power extraction from fuelcell stack arrays using dedicated power converters in series and parallel configuration. IEEE Trans Energy Convers 31(4):1442–1451

    Article  Google Scholar 

  • Wang MH et al (2016) Maximum power point tracking control method for proton exchange membrane fuel cell. IET Renew Power Gen. https://doi.org/10.1049/iet-rpg.2015.0205

    Article  Google Scholar 

  • Wang P, Zhou L, Zhang Y, Li J, Sumner M (2017) Input-parallel output-series DC-DC boost converter with a wide input voltage range for fuel cell vehicles. IEEE Trans Veh Technol 66(9):7771–7781

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Karthikeyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karthikeyan, B., Sundararaju, K. & Palanisamy, R. ANN-Based MPPT Controller for PEM Fuel Cell Energized Interleaved Resonant PWM High Step Up DC-DC Converter with SVPWM Inverter Fed Induction Motor Drive. Iran J Sci Technol Trans Electr Eng 45, 861–877 (2021). https://doi.org/10.1007/s40998-021-00413-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-021-00413-0

Keywords

Navigation