Skip to main content
Log in

Electronically Tunable VDTA-Based Multi-function Inverse Filter

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

An electronically tunable realization of voltage differencing transconductance amplifier (VDTA)-based multi-function inverse filter circuit is proposed in this letter. Various responses namely inverse low pass, inverse high pass, inverse band pass, and inverse band reject are achieved through switch settings. The proposed circuit uses only grounded capacitors and adds electronic tunability to filter parameters through bias currents of VDTA. SPICE simulations using TSMC 180 nm CMOS technology parameter are carried out to examine operation, total harmonic distortion and noise performance of proposal. Monte Carlo simulations are performed to study performance of the proposal under simultaneous variation in passive component values, oxide thickness and transistor threshold voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Abuelmaatti MT (2000) Identification of cascadable current-mode filters and inverse-filters using single FTFN. Frequenz 54:284–289

    Google Scholar 

  • Chipipop B, Surakampontorn W (1999) Realisation of current mode FTFN-based inverse filter. Electron Lett 35(9):690–692

    Article  Google Scholar 

  • Garg K, Bhagat R, Jaint BA (2012) A novel multifunction modified CFOA based inverse filter. In: Proceedings of IEEE international conference on power electronics—IICPE India. https://doi.org/10.1109/IICPE.2012.6450471

  • Gupta SS, Bhaskar DR, Senani R, Singh AK (2009) Inverse active filters employing CFOA. Electr Eng. https://doi.org/10.1007/s00202-009-0112-3

    Article  Google Scholar 

  • Gupta SS, Bhaskar DR, Senani R (2011) New analogue inverse filters realised with current feedback op-amps. Int J Electron 98(8):1103–1113

    Article  Google Scholar 

  • Herencsar N, Lahiri A, Koton J, Vrba K (2010) Realization of second-order inverse active filter using minimum passive components and DDCC. In: Proceedings of 33rd international conference on telecommunication and signal processing—TSP, Baden, Austria, pp 38–41

  • Herencsar N, Sotner R, Koton J, Misurec J, Vrba K (2013) New compact VM four-phase oscillator employing only single z-copy VDTA and all grounded passive elements. Elektron Ir Elektrotechn 19(10):87–90

    Article  Google Scholar 

  • Kuc R (1998) Introduction to digital signal processing. McGraw-Hill, New York

    Google Scholar 

  • Kumar P, Pandey N, Paul SK (2019) Realization of resistorless and electronically tunable inverse filters using VDTA. J Circuits Syst Comput. https://doi.org/10.1142/S0218126619501433

    Article  Google Scholar 

  • Leuciuc A (1997) Using nullors for realisation of inverse transfer functions and characteristics. Electron Lett 33(11):949–951

    Article  Google Scholar 

  • Pandey R, Pandey N, Negi T, Garg V (2013) CDBA based universal inverse filter. ISRN Electronics. https://doi.org/10.1155/2013/181869

    Article  Google Scholar 

  • Pandey N, Kumar P, Paul SK (2015) Voltage differencing transconductance amplifier based resistorless and electronically tunable wave active filter. Analog Integr Circuits Signal Process 84(1):107–117. https://doi.org/10.1007/s10470-015-0546-7

    Article  Google Scholar 

  • Prasad D, Bhaskar DR (2012a) Grounded and floating inductance simulation circuits using VDTAs. Circuits Syst 3(4):342–347

    Article  Google Scholar 

  • Prasad D, Bhaskar DR (2012b) Electronically controllable explicit current output sinusoidal oscillator employing single VDTA. ISRN Electron. https://doi.org/10.5402/2012/382560

    Article  Google Scholar 

  • Prasad D, Bhaskar DR, Srivastava M (2013a) Universal voltage-mode biquad filter using voltage differencing transconductance amplifier. Indian J Pure Appl Phys 51(12):864–868

    Google Scholar 

  • Prasad D, Srivastava M, Bhaskar DR (2013b) Electronically controllable fully-uncoupled explicit current-mode quadrature oscillator using VDTAs and grounded capacitors. Circuits Syst 4(2):169–172

    Article  Google Scholar 

  • Proakis JG, Manolakis DG (2007) Digital signal processing. Prentice Hall, New York

    Google Scholar 

  • Satansup J, Tangsrirat W (2014) Compact VDTA-based current-mode electronically tunable universal filters using grounded capacitors. Microelectron J 45(6):613–618

    Article  Google Scholar 

  • Satansup J, Pukkalanun T, Tangsrirat W (2013) Electronically tunable current mode universal filter using VDTAs and grounded capacitors. In: Proceedings of IMECS, Hong Kong, pp 647–650

  • Shah NA, Rather MF (2016) Realization of voltage-mode CCII-based all pass filter and its inverse version. Indian J Pure Appl Phys 44:269–271

    Google Scholar 

  • Shah NA, Quadri M, Iqbal SZ (2008) High output impedance current-mode all pass inverse filter using CDTA. Indian J Pure Appl Phys 46:893–896

    Google Scholar 

  • Singh H, Arora K, Prasad D (2014) VDTA—based wave active filter. Circuits Syst. https://doi.org/10.4236/cs.2014.55014

    Article  Google Scholar 

  • Singh AK, Gupta A, Senani R (2017) OTRA-based multi-function inverse filter configuration. Adv Electr Electron Eng 15(5):846–856. https://doi.org/10.15598/aeee.v15i5.2572

    Article  Google Scholar 

  • Sotner R, Jerabek J, Herencsar N, Petrzela J, Vrba K, Kincl Z (2014) Linearly tunable quadrature oscillator derived from LC Colpitts structure using voltage differencing transconductance amplifier and adjustable current amplifier. Analog Integr Circuits Signal Process 81(1):121–136. https://doi.org/10.1007/s10470-014-0353-6

    Article  Google Scholar 

  • Tangsrirat W, Unhavanich S (2014) Voltage differencing transconductance amplifier-based floating simulators with a single grounded capacitor. Indian J Pure Appl Phys 52(6):423–428

    Google Scholar 

  • Tsukutani T, Sumi Y, Yabuki N (2014) Electronically tunable inverse active filters employing OTAs and grounded capacitors. Int J Electron Lett. https://doi.org/10.1080/21681724.2014.984636

    Article  Google Scholar 

  • Wang HY, Lee CT (1999) Using nullors for realization of current-mode FTFN-based inverse filters. Electron Lett 35(22):1889–1890

    Article  Google Scholar 

  • Wang HY, Chang SH, Yang TY, Tsai PY (2011) A novel multifunction CFOA-based inverse filter. Circuits Syst 2:14–17. https://doi.org/10.4236/cs.2011.21003

    Article  Google Scholar 

  • Yesil A, Kacar F (2013) Electronically tunable resistorless mixed mode biquad filters. Radioengineering 22(4):1016–1025

    Google Scholar 

  • Yesil A, Kacar F, Kuntman H (2011) New simple CMOS realization of voltage differencing transconductance amplifier and its RF filter application. Radioengineering 20(3):632–637

    Google Scholar 

  • Yuce E, Minaei S (2010) New CCII-based versatile structure for realizing PID controller and instrumentation amplifier. Microelectron J 41:311–316

    Article  Google Scholar 

  • Yuce E, Tokat S, Kizilkaya A, Cicekoglu O (2006a) CCII-based PID controllers employing grounded passive components. Int J Electron Commun (AEU) 60:399–403

    Article  Google Scholar 

  • Yuce E, Tokat S, Minaei S, Cicekoglu O (2006b) Low-component-count insensitive current-mode and voltage-mode PID, PI and PD controllers. Frequenz 60:29–33

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neeta Pandey.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, P., Pandey, N. & Paul, S.K. Electronically Tunable VDTA-Based Multi-function Inverse Filter. Iran J Sci Technol Trans Electr Eng 45, 247–257 (2021). https://doi.org/10.1007/s40998-020-00355-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-020-00355-z

Keywords

Navigation