Skip to main content
Log in

Abstract

This paper presents differential voltage current conveyor transconductance amplifier (DVCCTA)-based proportional–derivative (PD), proportional–integral (PI) and proportional–integral–derivative controllers (PID) with electronic tunability. CMOS-based DVCCTA used in the proposed structure is more attractive for IC implementation since all the passive components are grounded. The proportional gain, the integral and derivative time constants can be independently controlled. This paper also presents PD, PI and PID controllers in a single unit using modified DVCCTA. One of the three controllers can be operated at a time by appropriate connection to the input terminals C1, C2 and C3. The analysis of theoretically proposed circuit has been simulated through PSPICE simulations using 0.25 µm Taiwan Semiconductor Manufacturing Company CMOS technology parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Ashraf J, Alam MS, Rathee D (2011) A new proportional-integral-derivative (PID) controller realization by using current conveyor. Int J Electron Eng 3(2):237–240

    Google Scholar 

  • Astrom KJ, Hagglund T (1995) PID controller: theory, design, and tuning, 2nd edn. International Society of Automation, SIA, Research Triangle Park

    Google Scholar 

  • Awad IA, Soliman AM (1999) Inverting second generation current conveyors: the missing building blocks, CMOS realizations and applications. Int J Electron 86(4):413–432

    Article  Google Scholar 

  • Bennette S (1993) Development of the PID controller. IEEE Control Syst Mag Eur Control Conf 13(6):58–62

    Google Scholar 

  • Biolek D (2003) CDTA-building block for current-mode analog signal processing. In: Proceedings of the European conference on circuit theory and design, Krakow, pp 397–400

  • Cevat E, Ali T, Cevdet A (2001) OTA-C based proportion-integral-derivative (PID) controller and calculating optimum parameter tolerances. Turk J Electr Eng 9(2):189–198

    Google Scholar 

  • Chein HC, Chen CY (2014) CMOS realization of single-resistance controlled and variable frequency dual-mode sinusoidal oscillators employing a single DVCCTA with all-grounded passive components. Microelectron J 45(2):226–238

    Article  Google Scholar 

  • Chiu W, Lin SI, Tsao HW, Chen JJ (1996) CMOS differential difference current conveyor and their applications. IEE Proc Circuits Devices Syst 143(2):91–96

    Article  MATH  Google Scholar 

  • Elwan HO, Soliman AM (1997) Novel CMOS differential voltage current conveyor and its applications. IEEE Proc Circuits Devices Syst 144(3):195–200

    Article  Google Scholar 

  • Erdal C, Toker A, Acar C (2001) A new current-feedback amplifiers (CFA) based proportional-integral-derivative (PID) controller realization and calculating optimum parameter tolerances. J Appl Sci 2(1):56–59

    Google Scholar 

  • Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional-integral-derivative (PID) controller. J Electr Electron Eng 4(2):1243–1248

    Google Scholar 

  • Fabre A, Saaid O, Wiest F, Boucheron C (1996) High frequency applications based on a new current controlled conveyor. IEEE Trans Circuit Syst I 43(2):82–91

    Article  Google Scholar 

  • Franco S (2002) Design with operational amplifiers and analog integrated circuits, 3rd edn. McGraw Hill Publication, New York

    Google Scholar 

  • Geiger RL, Sanchez-Sinencio E (1985) Active filter design using operational transconductance amplifiers: a tutorial. IEEE Circuits Devices Mag 1(2):20–32

    Article  Google Scholar 

  • Jantakun A, Pisutthipong N, Siripruchyanun M (2009) A Synthesis of temperature insensitive/electronically controllable floating simulators based on DV-CCTAs. In: 6th International conference on electrical engineering/electronics, computer, telecommunications, and information technology, Pattaya, Thailand, pp 560–563

  • Johnson MA, Moradi MH (2005) PID control new identification and design methods. Springer, Berlin

    Google Scholar 

  • Keskin AU (2006) Design of a PID controller circuit employing CDBAs. Int J Electr Eng Educ 43(1):48–56

    Article  Google Scholar 

  • Khateb F, Kumngern M, Vlassis S, Psychalinos C, Kulej T (2015) Sub-volt fully balanced differential difference amplifier. Circuits Syst Comput 24(1):1–18

    Google Scholar 

  • Khateb F, Kulej T, Kumngern M, Kledrowetz V (2017) Low-voltage diode-less rectifier based on fully differential difference transconductance amplifier. Circuits Syst Comput 26(11):1–8

    Google Scholar 

  • Kumngern M (2013) Voltage-mode PID controller using DDCCs and all grounded passive components. In: Proceedings of IEEE international conference on circuits and systems, Malaysia, pp 13–16

  • Kumngern M, Torteanchai U (2014) FDCCII-based P, PI, PD and PID controllers. In: Proceedings of 2014 4th international conference on digital information and communication technology and its applications (DICTAP), pp 415–418

  • Lahiri A, Jaikla W, Siripruchyanun M (2010) Voltage-mode quadrature sinusoidal oscillator with current tunable properties. Analog Integr Circuits Signal Process 65(2):321–325

    Article  Google Scholar 

  • Maiti S, Pal RR (2013) Universal biquadratic filter employing single differential voltage current controlled conveyor transconductance amplifier. Lect Notes Photonics Optoelectron 1(2):56–61

    Article  Google Scholar 

  • Nandi R, Venkateswaran P, Kar M (2014) MMCC based electronically tunable all pass filters using grounded synthetic inductor. Circuits Syst 5(4):89–97

    Article  Google Scholar 

  • Ogata K (2002) Modern control engineering, 4th edn. Prentice Hall, Pearson, Upper Saddle River

    MATH  Google Scholar 

  • Pandey N, Kumar P (2011) Differential voltage current conveyor transconductance amplifier based wave active filter. In: International conference on multimedia, signal processing and communication technologies, pp 95–98

  • Pandey N, Kapur S, Arora P, Sharma S (2011) MO-CCCCTA based PID controller employing grounded passive elements. In: Proceedings of 2011 2nd international conference on computer and communication technology (ICCCT), pp 270–273

  • Pandey N, Pandey R, Paul SK (2012) A first order all pass filter and its application in a quadrature oscillator. J Electron Devices 12(1):772–777

    Google Scholar 

  • Ranjan RK, Rani N, Paul SK, Kanyal G (2017a) Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron J 60(1):119–128

    Article  Google Scholar 

  • Ranjan RK, Raj N, Bhuwal N, Khateb F (2017b) Single DVCCTA based high frequency incremental/decremental memristor emulator and its application. Int J Electron Commun (AEU) 82(1):177–190

    Article  Google Scholar 

  • Ratale JS, Mungona SS (2014) Active filter based on differential voltage current conveyor transconductance amplifier (DVCCTA). Int J Adv Res Comput Sci Softw Eng 4(1):329–335

    Google Scholar 

  • Sedra AS, Smith KC (1970) A second generation current conveyor and its application. IEEE Trans Circuit Theory CT-17(1):132–134

    Article  Google Scholar 

  • Srisakultiew S, Siripruchyanun M (2013) A synthesis of electronically controllable current-mode PI, PD and PID controllers employing CCCDBAs. Circuits Syst 4(1):287–292

    Article  Google Scholar 

  • Toumazou C, Pyne A (1994) Current feedback op-amp: a blessing in disguise? IEEE Circuits Devices Mag 10:43–47

    Google Scholar 

  • Wang Z (1999) 2-MOSFET transistor with extremely low distortion for output reaching supply voltage. Electron Lett 26(25):951–952

    Google Scholar 

  • Yuce E, Tokat S, Kizilkaya A, Cicekoglu O (2006) CCII-based PID controllers employing grounded passive components. Int J Electron Commun 60(5):399–403

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeev Kumar Ranjan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrivastava, P., Surendra, S., Ranjan, R.K. et al. PI, PD and PID Controllers Using Single DVCCTA. Iran J Sci Technol Trans Electr Eng 43, 673–685 (2019). https://doi.org/10.1007/s40998-019-00180-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-019-00180-z

Keywords

Navigation