Skip to main content
Log in

Abstract

In recent years, orthogonal frequency-division multiplexing (OFDM) synthetic aperture radar (SAR) imaging has been introduced and an inter-range-cell interference (IRCI) free OFDM SAR has also been proposed. In this paper, we use this idea and propose an IRCI free cyclic prefix (CP)-based OFDM inverse synthetic aperture radar (ISAR) imaging which provides a high range resolution ISAR image. However, in order to use this algorithm, the motion parameters of target should be determined. Thus, before applying the algorithm, the motion parameters are estimated through proposing an iterative entropy-based method (IEBM). The proposed imaging algorithm and the IEBM are verified by simulations for CP-based OFDM ISAR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Franken GEA, Nikookar H, van Genderen P (2006) Doppler tolerance of OFDM-coded radar signals. In: Proc. 3rd EuRAD Conf. Manchester, pp 108111

  • Garmatyuk D, Schuerger J (2008) Conceptual design of a dual-use radar/communication system based on OFDM. In: Proc. IEEE MILCOM Conf. San Diego, p 17

  • Garmatyuk D, Schuerger J, Kauffman K, Spalding S (2009) Wideband OFDM system for radar and communications. In: Proc. IEEE Radar Conf. Pasadena, p 16

  • Sturm C, Pancera E, Zwick T, Wiesbeck W (2009) A novel approach to OFDM radar processing. In: Proc. IEEE Radar Conf. Pasadena, p 14

  • Sit YL, Sturm C, Reichardt L, Zwick T, Wiesbeck W (2011) The OFDM joint radar-communication system: An overview. In: Proc. 3rd Int. Conf. SPACOMM. Budapest, pp 6974

  • Sturm C, Wiesbeck W (2011) Waveform design and signal processing aspects for fusion of wireless communications and radar sensing. Proc IEEE 99(7):1236–1259

    Article  Google Scholar 

  • Riche V, Meric S, Baudais J, Pottier E (2012) Optimization of OFDM SAR signals for range ambiguity suppression. In: Proc. 9th EuRAD. Amsterdam, pp 278–281

  • Riche V, Meric S, Pottier E, Baudais J-Y (2012) OFDM signal design for range ambiguity suppression in SAR configuration. In: Proc. IEEE Int. IGARSS. Munich, p 2156–2159

  • Riche V, Meric S, Baudais J-Y, Pottier E (2014) Investigations on OFDM signal for range ambiguity suppression in SAR configuration. IEEE Trans Geosci Remote Sens 52(7):41944197

    Article  Google Scholar 

  • Kim J-H, Younis M, Moreira A, Wiesbeck W (2013) A novel OFDM chirp waveform scheme for use of multiple transmitters in SAR. IEEE Geosci Remote Sens Lett 10(3):568572

    Article  Google Scholar 

  • Garmatyuk D (2006) Simulated imaging performance of UWB SAR based on OFDM. In: Proc. IEEE Int. Conf. Ultra-Wideband. Waltham, pp 237–242

  • Garmatyuk D, Brenneman M (2011) Adaptive multicarrier OFDM SAR signal processing. IEEE Trans Geosci Remote Sens 49(10):37803790

    Article  Google Scholar 

  • Garmatyuk D (2012) Cross-range SAR reconstruction with multicarrier OFDM signals. IEEE Geosci Remote Sens Lett 9(5):808812

    Article  Google Scholar 

  • Berger C, Demissie B, Heckenbach J, Willett P, Zhou S (2010) Signal processing for passive radar using OFDM waveforms. IEEE J Sel Topics Signal Process 4(1):226238

    Article  Google Scholar 

  • Colone F, Woodbridge K, Guo H, Mason D, Baker C (2011) Ambiguity function analysis of wireless LAN transmissions for passive radar. IEEE Trans Aerosp Electron Syst 47(1):240264

    Article  Google Scholar 

  • Gutierrez Del Arroyo JR, Jackson JA (2013) WiMAX OFDM for passive SAR ground imaging. IEEE Trans Aerosp Electron Syst 49(2):945959

    Article  Google Scholar 

  • Falcone P, Colone F, Bongioanni C, Lombardo P (2010) Experimental results for OFDM WiFi-based passive bistatic radar. In: Proc. IEEE Radar Conf. Washington, DC, pp 516–521

  • Colone F, Falcone P, Lombardo P (2010) Ambiguity function analysis of WiMAX transmissions for passive radar. In: Proc. IEEE Radar Conf. Washington, DC, p 689–694

  • Chetty K, Woodbridge K, Guo H, Smith G (2010) Passive bistatic WiMAX radar for marine surveillance. In: Proc. IEEE Radar Conf. Washington, DC, p 188–193

  • Zhang T, Xia X-G (2015) OFDM synthetic aperture radar imaging with sufficient cyclic prefix. IEEE Trans Geosci Remote Sens 53(1):394404

    MathSciNet  Google Scholar 

  • Xia X-G, Zhang T, Kong L (2014) MIMO OFDM radar IRCI free range reconstruction with sufficient cyclic prefix. arXiv:1405.3899v2 [Unpublished (Online)]

  • Cao Y, Xia X-G, Wang S (2014) IRCI free co-located MIMO radar based on sufficient cyclic prefix OFDM waveforms. arXiv:1406.1488 [Unpublished (Online)]

  • Cao Y, Xia X-G (2015) IRCI free MIMO-OFDM SAR using circularly shifted Zadoff-Chu sequences. IEEE Geosci Remote Sens Lett 12(5):11261130

    Google Scholar 

  • Chen VC, Martorella M (2014) Inverse synthetic aperture radar imaging: principles, algorithms and applications. SciTech Publishing, Edison

    Book  Google Scholar 

  • Martorella M, Berizzi F, Haywood B (2005) A contrast maximization based technique for 2D ISAR autofocusing. In: Proc. Inst. Elect. Eng. Radar, Sonar Navig., vol 152, no 4, pp 253–262

  • Ozdemir C (2012) Inverse synthetic aperture radar imaging with MATLAB algorithms. Wiley, New York

    Book  Google Scholar 

  • Skolnik MI (2001) Introduction to radar systems. McGraw-Hill, New York

    Google Scholar 

  • Gray RM (2006) Toeplitz and circulant matrices: a review. Found Trends® Commun Inf Theory 2(3):155–239.

  • Haywood B, Evans RJ (1989) Motion compensation for ISAR imaging. In: Proc. ASSPA, vol 89. Adelaide, pp 113–117

  • Wahl DE, Eichel PH, Ghiglia DC, Jakowatz CV Jr (1994) Phase gradient autofocus-a robust tool for high resolution SAR phase correction. IEE Trans Aerosp Electron Syst 30(3):827835

    Article  Google Scholar 

  • Li X, Liu G, Ni J (1999) Autofocusing of ISAR images based on entropy minimization. IEEE Trans Aerosp Electron Syst 35(4):1240–1251

    Article  Google Scholar 

  • Wang J, Liu X, Zhou Z (2004) Minimum-entropy phase adjustment for ISAR. IEE Proc Radar Sonar Navig 151(4):203–209

    Article  Google Scholar 

  • Berizzi F, Martorella M, Haywood B, Dalle Mese E, Bruscoli S (2004) A survey on ISAR autofocusing techniques. In: Proceedings of the International Conference on Image Processing (ICIP), vol 1, p 912

  • Chen CC, Andrews HC (1980) Target-motion-induced radar imaging. IEEE Trans Aerosp Electron Syst 16(1):214

    Google Scholar 

  • Sauer T, Schroth A (1995) Robust range alignment algorithm via Hough transforms in an ISAR imaging system. IEEE Trans Aerosp Electron Syst 31(3):1173–1177

    Article  Google Scholar 

  • Wang J, Kasilingam D (2003) Global range alignment for ISAR. IEEE Trans Aerosp Electron Syst 39(1):351–357

    Article  Google Scholar 

  • Zhu D, Wang L, Yu Y, Tao Q, Zhu Z (2009) Robust ISAR range alignment via minimizing the entropy of the average range profile. IEEE Geosci Remote Sens Lett 6(2):204–208

    Article  Google Scholar 

  • Stoica P, Selen Y (2004) Cyclic minimizers, majorization techniques, the expectation-maximization algorithm: a refresher. IEEE Signal Process Mag 21(1):112114

    Article  Google Scholar 

  • Press WH et al (1987) Numerical recipes: the art of scientific computing. Cambridge University Press, New York, pp 120–122

    Google Scholar 

  • Zhang S, Liu Y, Li X (2015) Fast entropy minimization based autofocusing technique for ISAR imaging. IEEE Trans Signal Process 63(13):34253434

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Reza Hashempour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hashempour, H.R., Masnadi-Shirazi, M.A. & Sheikhi, A. Cyclic Prefix-Based OFDM ISAR Imaging. Iran J Sci Technol Trans Electr Eng 42, 239–249 (2018). https://doi.org/10.1007/s40998-018-0057-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-018-0057-5

Keywords

Navigation