Skip to main content

Advertisement

Log in

A New Robust Analog Maximum Power Point Tracker for a PV Battery Charger

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

Maximum power point tracking (MPPT) is an inevitable part of new controller design for PV connected voltage converters used to extract energy. To simplify the implementation of the algorithm, in this paper, an analog circuit for MPPT of a PV battery charger is proposed which works in a full range condition with constant switching frequency. Besides this, a new robust controller parameter is introduced. As discussed in the paper, conventional MPPT algorithms provide PV current or voltage reference value as output controller parameter, which fast climate changes may cause system instability. Here, a new variable is defined to eliminate the problem and improve the stability of the system. To compare the presented circuit with a conventional system, perturb and observe MPPT algorithm which is well-known in PV systems is implemented on the same system. The proposed system is also compared with a recently developed current-mode system. Simulation results for both simulations are presented and compared which demonstrate performance and effectiveness of the proposed analog MPPT circuit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Abdelsalam A, Massoud A, Ahmed S, Enjeti P (2011) High-performance adaptive perturb and observe MPPT technique for photovoltaic-based microgrids. IEEE Trans Power Electron 26(4):1010–1021

    Article  Google Scholar 

  • Alajmi B, Ahmed K, Finney S, Williams B (2011) Fuzzy-logic-control approach of a modified hill-climbing method for maximum power point in microgrid standalone photovoltaic system. IEEE Trans Power Electron 26(4):1022–1030

    Article  Google Scholar 

  • Applebaum J (1987) The quality of load matching in a direct-coupling photovoltaic system. IEEE Trans Energy Convers 2:534–541

    Article  Google Scholar 

  • Bazzi A, Krein P (2011) Concerning ‘maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control’. IEEE Trans Power Electron 26(6):1611–1612

    Article  Google Scholar 

  • Bodur M, Ermis M (1994) Maximum power point tracking for low power photovoltaic solar panels. In: Electrotechnical conf., proceedings, pp 758–761

  • Braunstein A, Zinger Z (1981) On the dynamic optimal coupling of a solar cell array to a load and storage batteries. IEEE Trans Power Appar Syst 100:1183–1188

    Article  Google Scholar 

  • Brunton S, Rowley C, Kulkarni S, Clarkson C (2010) Maximum power point tracking for photovoltaic optimization using ripple-based extremum seeking control. IEEE Trans Power Electron 25(10):2531–2540

    Article  Google Scholar 

  • de Berito M, Galotto L, Sampaio L, de Azevedo M, Canesin C (2013) Evaluation of the main MPPT techniques for photovoltaic applications. IEEE Trans Ind Electron 60(3):1156–1167

    Article  Google Scholar 

  • Doris E, Gelman R (2011) The role of policy in clean energy market transformation. US Department of Energy, Technical Report, NREL/TP-6A20-49193

  • Enslin J, Wolf M, Snyman D, Swiegers W (1997) Integrated photovoltaic maximum power point tracking converter. IEEE Trans Ind Electron 44(6):769–773

    Article  Google Scholar 

  • Esram T, Chapman P (2007) Comparison of photovoltaic array maximum power point tracking techniques. IEEE Trans Energy Convers 22(2):439–449

    Article  Google Scholar 

  • Gow J, Manning C (2000) Controller arrangement for boost converter systems sourced from solar photovoltaic arrays or other maximum power sources. Proc Inst Electr Eng 147(1):15–20

    Article  Google Scholar 

  • Hiyama T, Kuouzuma S, Imakubo T (1995) Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans Energy Convers 10(2):360–367

    Article  Google Scholar 

  • Hsieh C, Yang C, Feng F, Chen K (2010) A photovoltaic system with an analog maximum power point tracking technique for 97.3% high effectiveness. In: proc. ESSCIRC, pp 230–233

  • Hua CC, Fang YH, Chen WT (2016) Hybrid maximum power point tracking method with variable step size for photovoltaic systems. IET Renew Power Gen 10(2):127–132

    Article  Google Scholar 

  • Hussein K, Muta I, Hoshino T, Osakada M (1995) Maximum photovoltaic power tracking: an algorithm for rapidly changing atmosphere conditions. Proc Inst Electr Eng Conf 142:59–64

    Google Scholar 

  • Jeon YT, Lee H, Kim KA, Park JH (2017) Least power point tracking method for photovoltaic differential power processing systems. IEEE Trans Power Electron 32(3):1941–1951

    Article  Google Scholar 

  • Ji S, Jang D, Han S, Roh C, Hong S (2010) Analog control algorithm for maximum power tracker employed in photovoltaic applications. In: The proc. of int. power electronics conf., IPEC10, pp 99–103

  • Killi M, Samanta S (2015) Modified perturb and observe MPPT algorithm for drift avoidance in photovoltaic systems. IEEE Trans Ind Electron 62(9):5549–5559

    Article  Google Scholar 

  • Kislovski A, Redl R (1994) Maximum-power-tracking using positive feedback. In: Proc. IEEE power electron. spec. conf., pp 1065–1068

  • Lal VN, Singh SN (2016) Modified particle swarm optimisation-based maximum power point tracking controller for single-stage utility-scale photovoltaic system with reactive power injection capability. IET Renew Power Gen 10(7):899–907

    Article  Google Scholar 

  • Lee K, Niu J, Lin G (2008) A simplified analog control circuit of a maximum power point tracker. In: Proc. of 33rd IEEE photovoltaic specialists conf., PVSC ‘08, pp 1–3

  • Leyva R, Alonso C, Queinnec I, Pastor A, Lagrange D, Salamero L (2006) MPPT of photovoltaic systems using extremum–seeking control. IEEE Trans Aerosp Electron Syst 42(1):249–258

    Article  Google Scholar 

  • Liang Z, Guo R, Huang A (2010) A new cost-effective analog maximum power point tracker for PV systems. In: energy conversion congress and exposition (ECCE), pp 624–631

  • Mahmoud Y, Abdelwahed M, El-Saadany EF (2016) An enhanced MPPT method combining model-based and heuristic techniques. IEEE Trans Sustain Energy 7(2):576–585

    Article  Google Scholar 

  • Maity S, Sahu PK (2016) Modeling and analysis of a fast and robust module-integrated analog photovoltaic MPP tracker. IEEE Trans Power Electron 31(1):280–291

    Article  Google Scholar 

  • Moon S, Yoon SG, Park JH (2015) A new low-cost centralized MPPT controller system for multiply distributed photovoltaic power conditioning modules. IEEE Trans Smart Grid 6(6):2649–2658

    Article  Google Scholar 

  • Nafeh A, Fahmy F, Mahgoub O, Abou El-Zahab E (1999) Microprocessor control system for maximum power operation of PV arrays. Int J Numer Model 12:187–195

    Article  MATH  Google Scholar 

  • Nguyen T, Low K (2010) A global maximum power point tracking scheme employing DIRECT search algorithm for photovoltaic systems. IEEE Trans Ind Electron 57(10):3456–3467

    Article  Google Scholar 

  • Petrone G, Spagnuolo G, Vitelli M (2011) A multivariable perturb-and-observe maximum power point tracking technique applied to a single-stage photovoltaic inverter. IEEE Trans Ind Electron 58(1):76–84

    Article  Google Scholar 

  • Sera D, Mathe L, Kerekes T, Spataru S, Teodorescu R (2013) On the perturb-and-observe and incremental conductance MPPT methods for PV systems. IEEE J Photovolt 3(3):1070–1078

    Article  Google Scholar 

  • Sher HA, Murtaza AF, Noman A, Addoweesh KE, Al-Haddad K, Chiaberge M (2015) A new sensorless hybrid MPPT algorithm based on fractional short-circuit current measurement and P&O MPPT. IEEE Trans Sustain Energy 6(4):1426–1434

    Article  Google Scholar 

  • Sundareswaran K, Peddapati S, Palani S (2014) MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies. IEEE Trans Energy Convers 29:463–472

    Article  Google Scholar 

  • Tariq A, Asghar M (2005) Development of an analog maximum power point tracker for photovoltaic panel. In: International conf. on power electronics and drives systems, PEDS 05, pp 251–255

  • Teng JH, Huang WH, Hsu TA, Wang CY (2016) Novel and fast maximum power point tracking for photovoltaic generation. IEEE Trans Ind Electron 63(8):4955–4966

    Google Scholar 

  • Tse K, Ho M, Chung H, Hui S (2002) A novel maximum power point tracker for PV panels using switching frequency modulation. IEEE Trans Power Electron 17(6):980–989

    Article  Google Scholar 

  • Veerachary M, Senjyu T, Uezato K (2003) Neural-network-based maximum-power-point tracking of coupled-inductor interleaved-boost-converter-supplied PV system using fuzzy controller. IEEE Trans Ind Electron 50(4):749–758

    Article  Google Scholar 

  • Villalva MG, de Siqueira TG, Ruppert E (2010) Voltage regulation of photovoltaic arrays: small-signal analysis and control design. IET Power Electron 3(6):869–880

    Article  Google Scholar 

  • Wang Y, Li Y, Ruan X (2016) High-accuracy and fast-speed MPPT methods for PV string under partially shaded conditions. IEEE Trans Ind Electron 63(1):235–245

    Article  Google Scholar 

  • Weidong X, Zeineldim H, Zhang P (2013) Statistic and parallel testing procedure for evaluating maximum power point tracking algorithms of photovoltaic power systems. IEEE J Photovolt 3(3):1062–1069

    Article  Google Scholar 

  • Wolf S, Enslin J (1993) Economical, PV maximum power point tracking regulator with simplistic controller. In: Proc. IEEE power electron. spec. conf., pp 581–587

  • Zhou L, Chen Y, Guo K, Jia F (2011) New approach for MPPT control of photovoltaic system with mutative-scale dual-carrier chaotic search. IEEE Trans Power Electron 26(4):1038–1048

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amirhossein Rajaei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rajaei, A. A New Robust Analog Maximum Power Point Tracker for a PV Battery Charger. Iran J Sci Technol Trans Electr Eng 42, 123–133 (2018). https://doi.org/10.1007/s40998-017-0043-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0043-3

Keywords

Navigation