Skip to main content
Log in

Master–Slave Stochastic Optimization for Model-Free Controller Tuning

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Electrical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the model-free tuning of Fractional Order Proportional–Integral–Derivative (FOPID) controllers for twin rotor multi input multi output system (TRMS) using master–slave Stochastic Multi-parameters Divergence Optimization (SMDO) method. Second Order System (SOS) is used as a reference model for guidance of tuning process. Master and slave SMDOs perform optimization of design coefficients for the master system SOS and the slave system FOPID controller in parallel. In the first stage of optimization, called locking, step responses of FOPID and SOS approximate to each other. In the second stage, called drifting, SOS guides the tuning of FOPID control towards a desired step response of master system SOS. We observed that the proposed method provides two major advantages of master–slave SMDO method: First, the optimization of reference model (SOS) and FOPID controller is performed together and this allows better fitting of the reference model and real control system without a prior model assumption. Second, this optimization strategy can be effective for online fine-tuning of real FOPID control system to match a suitable SOS dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aghababa MP (2016) Optimal design of fractional-order PID controller for five bar linkage robot using a new particle swarm optimization algorithm. Soft Comput 20:4055–4067. doi:10.1007/s00500-015-1741-2

    Article  Google Scholar 

  • Ahammad SF, Purwar S (2009) A nonlinear state observer design for 2-DOF twin rotor system using neural networks. In: Advances in computing, control, & telecommunication technologies, Trivandrum, Kerala, pp 15–19

  • Ahmad SM, Chipperfield AJ, Tokhi MO (2000) Dynamic modeling and optimal control of a Twin Rotor MIMO System. In: National aerospace and electronics conference, Dayton, OH, pp 391–398. doi:10.1109/NAECON.2000.894937

  • Alagoz BB, Ates A, Yeroglu C (2013) Auto-tuning of PID controller according to fractional-order reference model approximation for DC rotor control. Mechatronics 23:789–797. doi:10.1016/j.mechatronics.2013.05.001

    Article  Google Scholar 

  • Arya Y, Kumar N (2017) BFOA-scaled fractional order fuzzy PID controller applied to AGC of multi-area multi-source electric power generating systems. Swarm Evol Comput 32:202–218. doi:10.1016/j.swevo.2016.08.002

    Article  Google Scholar 

  • Ates A, Yeroglu C (2016) Optimal fractional order PID design via Tabu Search based algorithm. ISA Trans 60:109–118. doi:10.1016/j.isatra.2015.11.015

    Article  Google Scholar 

  • Ates A, Yeroglu C, Alagoz BB, Senol B (2014) Tuning of fractional order PID with master-slave stochastic multi-parameter divergence optimization method. In: International conference on fractional differentiation and its applications pp. 1–6. doi:10.1109/ICFDA.2014.6967388

  • Caponetto R, Dongola G, Fortuna L (2010) Fractional order systems modeling and control applications. In: Chua LO (ed) World scientific series on nonlinear science, Series A, vol 32. World Scientific Publishing, Singapore, pp 1–143

  • Carlson GE, Halijak CA (1964) Approximation of fractional capacitors (1/s)1/n by a regular Newton process. IEEE Trans Circuit Theory 11:210–213. doi:10.1109/TCT.1964.1082270

    Article  Google Scholar 

  • De Keyser R, Muresan CI, Ionescu CM (2016) A novel auto-tuning method for fractional order PI/PD controllers. ISA Trans 62:268–275. doi:10.1016/j.isatra.2016.01.021

    Article  Google Scholar 

  • Feedback Instruments Twin Rotor MIMO System Control Experiments 33-949S (For use with MATLAB R2006 b version 7.3, 2006)

  • Gau JJ, Liu WK, Tsai CY (2005) Intelligent control scheme for twin rotor MIMO system. In: Mechatronics international conference, Taipei, pp. 102–107. doi:10.1109/ICMECH.2005.1529235

  • Krishna BT, Reddy KVVS (2008) Active and passive realization of fractance device of order 1/2. Act Passive Electron Compon 2008:1–5. doi:10.1155/2008/369421

    Article  Google Scholar 

  • Kumar AVA, Balasubramaniam P (2009) Optimal control for linear system using genetic programming. Optimal Control Appl Methods 30:47–60. doi:10.1002/oca.852

    Article  MathSciNet  Google Scholar 

  • Li C, Zhang N, Lai X, Zhou J, Xu Y (2017) Design of a fractional-order PID controller for a pumped storage unit using a gravitational search algorithm based on the Cauchy and Gaussian mutation. Inf Sci 396:162–181. doi:10.1016/j.ins.2017.02.026

    Article  Google Scholar 

  • Malek H, Ying L, Chen YQ (2013) Identification and tuning fractional order proportional integral controllers for time delayed systems with a fractional pole. Mechatronics 23:746–754. doi:10.1016/j.mechatronics.2013.02.005

    Article  Google Scholar 

  • Matsuda K, Fujii H (1993) H∞-optimized wave-absorbing control: analytical and experimental results. J Guid Control Dyn 16:1146–1153. doi:10.2514/3.21139

    Article  MATH  Google Scholar 

  • Meza GR, Nieto SG, Sanchis J, Blasco FX (2013) Controller tuning by means of multi-objective optimization algorithms: a global tuning framework. IEEE Trans Control System Technol 21:445–458. doi:10.1109/TCST.2012.2185698

    Article  Google Scholar 

  • Mousavi Y, Alfi A (2015) A memetic algorithm applied to trajectory control by tuning of Fractional Order Proportional–Integral–Derivative controllers. Appl Soft Comput 36:599–617. doi:10.1016/j.asoc.2015.08.009

    Article  Google Scholar 

  • Muthukumar P, Balasubramaniam P, Ratnavelu K (2016) T–S fuzzy predictive control for fractional order dynamical systems and its applications. Nonlinear Dyn 86:751–763. doi:10.1007/s11071-016-2919-6

    Article  MATH  Google Scholar 

  • Ogata K (2010) Modern control engineering. Prentice Hall, Boston, pp 1–886

    Google Scholar 

  • Oustaloup A (1991) La commande CRONE: commande robuste d’ordre non entier. Hermès,” Paris, pp. 495

  • Oustaloup A, Melchior P, Lanusse P, Cois O, Dancla F (2000) The CRONE toolbox for Matlab. Computer-Aided Control System Design, Anchorage, pp 190–195

    Google Scholar 

  • Podlubny I (1999) Fractional order systems and controller. Proc. IEEE Trans Autom Control 44:208–214. doi:10.1109/9.739144

    Article  MathSciNet  MATH  Google Scholar 

  • Roy P, Roy BK (2016) Dual mode adaptive fractional order PI controller with feedforward controller based on variable parameter model for quadruple tank process. ISA Trans 63:365–376. doi:10.1016/j.isatra.2016.03.010

    Article  Google Scholar 

  • Shahiri M, Ranjbar A, Karami MR, Ghaderi R (2016) New tuning design schemes of fractional complex-order PI controller. Nonlinear Dyn 84:1813–1835. doi:10.1007/s11071-016-2608-5

    Article  MathSciNet  MATH  Google Scholar 

  • Shan WJ Tang W 2016 A neural network fractional order PID controller for FOLPD process. In: 35th Chinese control conference, pp. 10459–10463, IEEE. doi:10.1109/ChiCC.2016.7555013

  • Sharma R, Gaur P, Mittal AP (2016) Design of two-layered fractional order fuzzy logic controllers applied to robotic manipulator with variable payload. Appl Soft Comput 47:565–576. doi:10.1016/j.asoc.2016.05.043

    Article  Google Scholar 

  • Shih CL, Chen ML, Wang JY (2008) Mathematical model and set-point stabilizing controller design of a Twin Rotor MIMO System. Asian J Control 10:107–114. doi:10.1002/asjc.11

    Article  MathSciNet  Google Scholar 

  • Spall JC (1999) Stochastic optimization and the simultaneous perturbation method. In: Proceedings of the 31st conference on winter simulation: simulation a bridge to the future, pp. 101–109. doi:10.1145/324138.324170

  • Taoa CW, Taurb JS, Chena YC (2010) Design of a parallel distributed fuzzy LQR controller for the twin rotor multi-input multi-output system. Fuzzy Set sand Syst 16:2081–2103. doi:10.1016/j.fss.2009.12.007

    Article  MathSciNet  Google Scholar 

  • Valério D 2005 Ninteger v. 2.3 Fractional Control Toolbox for MATLAB, http://web.ist.utl.pt/~duarte.vale. (Online Available 18.01.2017)

  • Valério D, Machado J, Kiryakova V (2014) Some pioneers of the applications of fractional calculus. Fract Calc Appl Anal 17:552–578. doi:10.2478/s13540-014-0185-1

    Article  MathSciNet  MATH  Google Scholar 

  • Vinagre B, Podlubny I, Hernández A, Feliu V (2000) Some approximations of fractional order operators used in control theory and applications. Fract Calc Appl Anal 3:231–248

    MathSciNet  MATH  Google Scholar 

  • Xu Y, Zhou J, Xue X, Fu W, Zhu W, Li C (2016) An adaptively fast fuzzy fractional order PID control for pumped storage hydro unit using improved gravitational search algorithm. Energy Convers Manage 111:67–78. doi:10.1016/j.enconman.2015.12.049

    Article  Google Scholar 

  • Yeroglu C, Ates A (2014) A stochastic multi-parameters divergence method for online auto-tuning of fractional order PID controllers. J Franklin Inst 351:2411–2429. doi:10.1016/j.jfranklin.2013.12.006

    Article  MathSciNet  Google Scholar 

  • Zamani A, Barakati SM, Yousofi-Darmian S (2016) Design of a fractional order PID controller using GBMO algorithm for load–frequency control with governor saturation consideration. ISA Trans 64:56–66. doi:10.1016/j.isatra.2016.04.021

    Article  Google Scholar 

  • Zeng GQ, Chen J, Dai YX, Li LM, Zheng CW, Chen MR (2015) Design of fractional order PID controller for automatic regulator voltage system based on multi-objective extremal optimization. Neurocomputing 160:173–184. doi:10.1016/j.neucom.2015.02.051

    Article  Google Scholar 

  • Zeng GQ, Liu HY, Wu D, Li LM, Wu L, Dai YX, Lu KD (2017) A real-coded extremal optimization method with multi-non-uniform mutation for the design of Fractional Order PID Controllers. Inf Technol Control 45:358–375. doi:10.5755/j01.itc.45.4.13310

    Google Scholar 

  • Zhang F, Yang C, Zhou X, Gui W (2016) Fractional-order PID controller tuning using continuous state transition algorithm. Neural Comput Appl. doi:10.1007/s00521-016-2605-0

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdullah Ates.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ates, A., Alagoz, B.B. & Yeroglu, C. Master–Slave Stochastic Optimization for Model-Free Controller Tuning. Iran J Sci Technol Trans Electr Eng 41, 153–163 (2017). https://doi.org/10.1007/s40998-017-0029-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40998-017-0029-1

Keywords

Navigation