Skip to main content
Log in

Abstract

With the continuous development of the economic society, there is a growing demand for higher power density in motors, which has made motor heat dissipation issues increasingly prominent. Excessive motor temperature can lead to various problems such as geometric deformation, increased losses, insulation aging, and demagnetization of permanent magnets, all of which severely impact the performance and safety of the motor. Developing efficient and reliable thermal management technologies for motors is crucial for improving motor efficiency, durability, and safety. Building on previous research, this paper provides a comprehensive summary and analysis of the current state of thermal management technologies for motors, going beyond specific types of motors. Firstly, it outlines commonly used thermal analysis methods such as lumped parameter thermal network, finite element method, and computational fluid dynamics. The challenges encountered during the thermal analysis process are also discussed. During thermal analysis, the accuracy of the winding equivalent methods, the convective heat transfer coefficient and the contact resistance directly and greatly affect the precision of the thermal analysis. Therefore, it is crucial to prioritize in-depth discussions regarding these factors to ensure accurate thermal analysis. Based on this foundation, the development and research status of motor thermal technology including air cooling, water cooling, oil cooling, and evaporative cooling is further explored. Oil possesses good insulation performance and corrosion resistance, enabling direct contact with heat sources. Consequently, oil cooling exhibits superior heat dissipation efficiency, addressing the thermal management challenges in high-power density motors. Special emphasis is given to summarizing and analyzing oil cooling technology. Additionally, the influence of phase change materials, encapsulation materials, and heat conduction plates on motor cooling efficiency is discussed. In conclusion, it is hoped that the contents of this paper will provide valuable guidance and reference for future research in thermal management technologies for motors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

CFD:

Computational fluid dynamics

DOC:

Direct oil cooling

ETCW:

Equivalent thermal conductivity of the windings

FEM:

Finite element method

IOC:

Indirect oil cooling

LPTN:

Lumped parameter thermal network

TMTs:

Thermal management technologies

\(C_{f}\) :

Air friction coefficient

\(D\) :

Diameter [m]

k :

Roughness coefficient

\(l\) :

Axial length [m]

\(P_{w}\) :

Windage loss [W

\(\rho\) :

Density [kg/m3]

\(\omega\) :

Angular velocity [rad/s]

\(\lambda\) :

Thermal conductivity [W/ (m K)

References

  • Acquaviva A, Wallmark O, Grunditz E, Lundmark S, Thirniger T (2019) Computationally efficient modeling of electrical machines with cooling jacket. IEEE Trans Transp Electrif 5(3):618–629

    Article  Google Scholar 

  • Ahmed F, Roy P, Towhidi M, Feng G, Kar NC (2019) CFD and LPTN hybrid technique to determine convection coefficient in end-winding of TEFC induction motor with copper rotor. In: IECON 2019-45th annual conference of the IEEE industrial electronics society. IEEE, 2019, 1: 939–944

  • Ai M, Yang Y, Xu Y, Zhenbo L, Xu L, Wang W (2019) Research on thermal characteristics of internal ventilated paths in compact medium high-voltage motor based fluid network decoupling. IEEE Access 7:79268–79276

    Article  Google Scholar 

  • Ai M, Liu W, Xu Z (2021) Research on energy saving and thermal management of high-efficiency and high-voltage motor based on fluid network decoupling. Energy Rep 7:8332–8345

    Article  Google Scholar 

  • Appadurai M, Raj EFI, Venkadeshwaran K (2021) Finite element design and thermal analysis of an induction motor used for a hydraulic pumping system. Mater Today Proc 45:7100–7106

    Article  Google Scholar 

  • Assaad B, Mikati K, Tran TV, Negre E (2018) Experimental study of oil cooled induction motor for hybrid and electric vehicles. In: 2018 XIII international conference on electrical machines (ICEM), 1195–1200

  • Ayat S, Wrobel R, Goss J, Drury D (2016) Estimation of equivalent thermal conductivity for impregnated electrical windings formed from profiled rectangular conductors. In: 8th IET International conference on power electronics, machines and drives (PEMD 2016). IET, 1–6

  • Baggu MM, Hess HL, Rink KK (2005) Thermal modeling of “direct lamination cooling (DLC)” induction motor for hybrid electric vehicle applications. In: 2005 IEEE vehicle power and propulsion conference. IEEE, 468–472.

  • Baojun G, Jiong Z, Tao D (2022) Temperature prediction and cooling structure optimization of explosion-proof high pressure water-cooled double speed motor. Energy Rep 8:3891–3901

    Article  Google Scholar 

  • Bartlomiej M, Jacek S, Janusz H, Paweł L (2019) Numerical and experimental analysis of heat dissipation intensification from electric motor. Energy 182:269–279

    Article  Google Scholar 

  • Boglietti A, Cavagnino A, Staton D (2008) Determination of critical parameters in electrical machine thermal models. IEEE Trans Ind Appl 44(4):1150–1159

    Article  Google Scholar 

  • Boglietti A, Cavagnino A, Staton D, Shanel M, Mueller M, Mejuto C (2009) Evolution and modern approaches for thermal analysis of electrical machines. IEEE Trans Industr Electron 56(3):871–882

    Article  Google Scholar 

  • Boglietti A, Carpaneto E, Cossale M, Vaschetto S, Popescu M, Staton DA (2016) Stator winding thermal conductivity evaluation: an industrial production assessment. IEEE Trans Ind Appl 52(5):3893–3900

    Article  Google Scholar 

  • Boglietti A, Cossale M, Vaschetto S, Dutra T (2017) Thermal conductivity evaluation of fractional-slot concentrated-winding machines. IEEE Trans Ind Appl 53(3):2059–2065

    Article  Google Scholar 

  • Cai X, Cheng M, Zhu S, Zhang J (2016) Thermal modeling of flux-switching permanent-magnet machines considering anisotropic conductivity and thermal contact resistance. IEEE Trans Ind Electron 63(6):3355–3365

    Article  Google Scholar 

  • Camilleri R, Beard P, Howey DA, McCulloch MD (2017) Prediction and measurement of the heat transfer coefficient in a direct oil-cooled electrical machine with segmented stator. IEEE Trans Ind Electron 65(1):94–102

    Article  Google Scholar 

  • Carriero A, Locatelli M, Ramakrishnan K, Mastinu G, Gobbi M (2018) A review of the state of the art of electric traction motors cooling techniques. SAE Int 1–13

  • Cavazzuti M, Gaspari G, Pasquale S, Stalio E (2019) Thermal management of a formula E electric motor: analysis and optimization. Appl Therm Eng 157:113733

    Article  Google Scholar 

  • Chang CC, Kuo YF, Wang JC, Chen SL (2010) Air cooling for a large-scale motor. Appl Therm Eng 30:1360–1368

    Article  Google Scholar 

  • Chang M, Lai B, Wang H, Bai J, Mao Z (2023) Comprehensive efficiency analysis of air-cooled vs water-cooled electric motor for unmanned aerial vehicle. Appl Therm Eng 225:120226

    Article  Google Scholar 

  • Chen J, Liu W, Zhang C, Cui Z, Shu X (2019) Temperature field analysis of high-speed permanent magnet machine based on dimpled water-cooling structure. Electric Mach Control 23(9):35–42

    Google Scholar 

  • Chen W, Ju Y, Yan D, Guo L, Geng Q, Shi T (2019) Design and optimization of dual-cycled cooling structure for fully-enclosed permanent magnet motor. Appl Therm Eng 152:338–349

    Article  Google Scholar 

  • Chen W, Mao Z, Tian W (2024) Water cooling structure design and temperature field analysis of permanent magnet synchronous motor for underwater unmanned vehicle. Appl Therm Eng 240:122243

    Article  Google Scholar 

  • Chen K, Masrur A, Ahmed S, Garg VK (2003) Jet impingement cooling of electric motor end-windings: U.S. Patent 6, 639, 334. 2003-10-28

  • Cheng X, Xu W, Du G, Zeng G, Zhu J (2019) Novel rotors with low eddy current loss for high speed permanent magnet machines. CES Trans Electr Mach Syst 3(2):187–194

    Article  Google Scholar 

  • Cheng Z, Ruan L, Gao J, Huang S, Yang J (in press) Influence research of hollow conductor on electromagnetic and cooling characteristics of evaporative internal cooling wind generator. In: Proceedings of the CSEE (in Chinese)

  • Chiu H-C, Jang J-H, Yan W-M, Shiao R-B (2011) Eddy-current calculation of solid components in fractional slot axial flux permanent magnet synchronous machines. IEEE Trans Magn 47(10):4254–4257

    Article  Google Scholar 

  • Contreras EMC, Oliveira GA, Bandarra Filho EP (2019) Experimental analysis of the thermohydraulic performance of graphene and silver nanofluids in automotive cooling systems. Int J Heat Mass Transfer 132:375–387

    Article  Google Scholar 

  • Crescimbini F, Di Napoli A, Solero L, Caricchi F (2005) Compact permanent-magnet generator for hybrid vehicle applications. IEEE Trans Ind Appl 41(5):1168–1177

    Article  Google Scholar 

  • Dakin TW (1948) Electrical insulation deterioration treated as a chemical rate phenomenon. Trans Am Inst Electr Eng 67:113–122

    Article  Google Scholar 

  • Davin T, Julien P, Souad H, Yu R (2015) Experimental study of oil cooling systems for electric motors. Appl Therm Eng 75(1):1–13

    Article  Google Scholar 

  • Deriszadeh A, de Monte F (2020) On heat transfer performance of cooling systems using nanofluid for electric motor applications. Entropy 22(1):99

    Article  MathSciNet  Google Scholar 

  • Ding S, Jiang X, Zhu M, Liu W (2020) Starting and steady temperature rise investigation for permanent magnet synchronous motor based on lumped-parameter thermal-network. Electr Mach Control 24(05):143–150 (in Chinese)

    Google Scholar 

  • Dong H, Wang P, Ma S, Gu Y (2020) Effect of cooling oil on electrical properties of interturn insulation for inverter-fed motor. Insul Mater 53(11):38–44 (in Chinese)

    Google Scholar 

  • Driesen J, Belmans RJ, Hameyer K (2001) Finite-element modeling of thermal contact resistances and insulation layers in electrical machines. IEEE Trans Ind Appl 37(1):15–20

    Article  Google Scholar 

  • Du A, Zhang D, Sun M, Yuan Z (2019) Research on temperature field of the permanent magnet synchronous motors for hybrid vehicles cooled by oil. Automobile Technol 04:34–39 (in Chinese)

    Google Scholar 

  • Emily Cousineau J, Bennion K, Chieduko V, Lall R, Gilbert A (2018) Experimental characterization and modeling of thermal contact resistance of electric machine stator-to-cooling jacket interface under interference fit loading. J Therm Sci Eng Appl 10(4):041016

    Article  Google Scholar 

  • Enzo G, Parisi P, Marignetti F, Volpe G (2018) CFD analyses of a radial fan for electric motor cooling. Therm Sci Eng Progress 8:470–476

    Article  Google Scholar 

  • Fan X, Qu R, Li J, Dawei L, Zhang B, Wang C (2017) Ventilation and thermal improvement of radial forced air-cooled FSCW permanent magnet synchronous wind generators. IEEE Trans Ind Appl 53(4):3447–3456

    Article  Google Scholar 

  • Fan X, Li D, Qu R, Wang C (2018) A dynamic multilayer winding thermal model for electrical machines with concentrated windings. IEEE Trans Ind Electron 66(8):6189–6199

    Article  Google Scholar 

  • Fang G, Yuan W, Yan Z, Sun Y, Tang Y (2019) Thermal management integrated with three-dimensional heat pipes for air-cooled permanent magnet synchronous motor. Appl Therm Eng 152:594–604

    Article  Google Scholar 

  • Fawzal AS, Cirstea RM, Gyftakis KN, Woolmer TJ, Dickison M, Blundell M (2017) Fan performance analysis for rotor cooling of axial flux permanent magnet machines. IEEE Trans Ind Appl 53(4):3295–3304

    Article  Google Scholar 

  • Feng S (2021) Design and optimization of 50kw high-speed oil-cooled permanent magnet synchronous motor. Master Thesis, Liaoning University of Technology, China (In Chinese)

  • Fénot M, Bertin Y, Dorignac E, Lalizel G (2011) A review of heat transfer between concentric rotating cylinders with or without axial flow. Int Journal Therm Sci 50(7):1138–1155

    Article  Google Scholar 

  • Gai Y, Kimiabeigi M, Chong YC, Widmer JD, Deng X, Popescu M, Goss J, Staton DA, Steven A (2018) Cooling of automotive traction motors: schemes, examples, and computation methods. IEEE Trans Ind Electron 66(3):1681–1692

    Article  Google Scholar 

  • Gai Y, Kimiabeigi M, Chong YC, Widmer JD, Goss J, SanAndres U, Steven A, Staton DA (2018) On the measurement and modeling of the heat transfer coefficient of a hollow-shaft rotary cooling system for a traction motor. IEEE Trans Ind Appl 54(6):5978–5987

    Article  Google Scholar 

  • Galea M, Gerada C, Raminosoa T, Wheeler P (2011) A thermal improvement technique for the phase windings of electrical machines. IEEE Trans Ind Appl 48(1):79–87

    Article  Google Scholar 

  • Ge H, Zhang J, Zhuang X, Chen H (1990) Calculation of transient temperature field of rotor of oil-cooled alternating synchronous generator using network topology method. Small Spl Electr Mach 03:11–14 (in Chinese)

    Google Scholar 

  • Ghahfarokhi PS, Podgornovs A, Kallaste A, Cardoso AJM, Belahcen A, Vaimann T (2022) The oil spray cooling system of automotive traction motors: the state of the art. IEEE Trans Transp Electrif 9(1):428–451

    Article  Google Scholar 

  • Ghahfarokhi PS, Podgornovs A, Kallaste A, Vaimann T, Belahcen A, Cardoso AJM Oil spray cooling with hairpin windings in high-performance electric vehicle motors. In: 2021 28th International workshop on electric drives: improving reliability of electric drives (IWED). IEEE, 2021, 1–5

  • Grabowski M, Urbaniec K, Wernik J, Wołosz KJ (2016) Numerical simulation and experimental verification of heat transfer from a finned housing of an electric motor. Energy Convers Manag 125:91–96

    Article  Google Scholar 

  • Gronwald P-O, Kern TA (2021) Traction motor cooling systems, a literature review and comparative study. IEEE Trans Transp Electrif 7(4):2892–2913

    Article  Google Scholar 

  • Gu G, Ruan L (2014) Applications and developments of the evaporative cooling technology in the field of hydrogenerators. Proc CSEE 34(29):5112–5119

    Google Scholar 

  • Gu G, Ruan L, Liu F, Xiong B (2015) Developments, applications and prospects of evaporative cooling technology. Trans China Electrotech Soc 30(11):1–6 (in Chinese)

    Google Scholar 

  • Guechi MR, Desevaux P, Baucour P, Espanet C, Brunel R, Poirot M (2016) Spray cooling of electric motor coil windings. J Comput Multiphase Flows 8(2):95–100

    Article  Google Scholar 

  • Gundabattini E, Mystkowski A (2022) Review of air-cooling strategies, combinations and thermal analysis (experimental and analytical) of a permanent magnet synchronous motor. Proc Inst Mech Eng C J Mech Eng Sci 236(1):655–668

    Article  Google Scholar 

  • Gundabattini E, Mystkowski A, Raja Singh R, Gnanaraj SD (2021) Water cooling, PSG, PCM, Cryogenic cooling strategies and thermal analysis (experimental and analytical) of a Permanent Magnet Synchronous Motor: a review. Sādhanā 46(3):124

    Article  Google Scholar 

  • Gundabattini E, Kuppan R, Solomon DG, Kalam A, Kothari DP, Bakar RA (2021) A review on methods of finding losses and cooling methods to increase efficiency of electric machines. Ain Shams Eng J 12(1):497–505

    Article  Google Scholar 

  • Guo F, Zhang C (2019) Oil-cooling method of the permanent magnet synchronous motor for electric vehicle. Energies 12(15):2984

    Article  Google Scholar 

  • Guo J, Gu G, Fu D, Huang D (2013) Cooling characteristics and performance of the 330MW evaporative cooling turbo generator. Trans China Electrotech Soc 28(03):134–139 (in Chinese)

    Google Scholar 

  • Guo B, Huang Y, Guo Y, Zhu J (2016) Thermal analysis of the conical rotor motor using LPTN with accurate heat transfer coefficients. IEEE Trans Appl Supercond 26(7):1–7

    Google Scholar 

  • Guo S, Wang J, Xia X, Lv H (2020) Analysis on cooling technologies of vehicle driving motors based on patent analysis. Automotive Digest 5:8–12 (in Chinese)

    Google Scholar 

  • Guo H, Hu X, Yang Y, Wang Q, Xue S, Chen T (2023) Study on insulation stability and thermal conductivity of the transformer oil modified by rare-earth composite nanoparticles. Journal of the Chinese Society of Rare Earths, in press (in Chinese)

  • Ha T, Kim DK (2021) Study of injection method for maximizing oil-cooling performance of electric vehicle motor with hairpin winding. Energies 14(3):747

    Article  Google Scholar 

  • Han J, Ge B, Tao D, Li W (2016) Influence of cooling fluid parameter on the fluid flow and end part temperature in end region of a large turbogenerator. IEEE Trans Energy Convers 31(2):466–476

    Article  Google Scholar 

  • Han NG, Lee HL, Kim RH, Beom TY, Kim YK, Ha TW, Lee SW, Kim DK (2023) Thermal analysis of the oil cooling motor according to the churning phenomenon. Appl Therm Eng 220:119791

    Article  Google Scholar 

  • Hashin Z, Shtrikman S (1962) A variational approach to the theory of the effective magnetic permeability of multiphase materials. J Appl Phys 33(10):3125–3131

    Article  Google Scholar 

  • Holman JP (1997) Heat transfer. McGraw-Hill, New York

    Google Scholar 

  • Hosain ML, Fdhila RB (2017) Air-gap heat transfer in rotating electrical machines: a parametric study. Energy Procedia 142:4176–4181

    Article  Google Scholar 

  • Hosain ML, Fdhila RB, Rönnberg K (2017) Taylor-Couette flow and transient heat transfer inside the annulus air-gap of rotating electrical machines. Appl Energy 207:624–633

    Article  Google Scholar 

  • Howey DA, Childs PR, Holmes AS (2010) Air-gap convection in rotating electrical machines. IEEE Trans Ind Electron 59(3):1367–1375

    Article  Google Scholar 

  • Huang C (2005) Technical characteristics of the large oil/water cooled turbine generator. Dongfang Electr Rev 4(4):202–213

    Google Scholar 

  • Huang X, Tan Q, Li L, Li J, Qian Z (2016) Winding temperature field model considering void ratio and temperature rise of a permanent-magnet synchronous motor with high current density. IEEE Trans Ind Electron 64(3):2168–2177

    Article  Google Scholar 

  • Huang Z, Marquez F, Alakula M, Yuan J (2012) Characterization and application of forced cooling channels for traction motors in HEVs. In: 22th International conference on electrical machines. IEEE, 1212–1218.

  • Huang Z, Nategh S, Lassila V, Alaküla M, Yuan J (2012) Direct oil cooling of traction motors in hybrid drives. In: 2012 IEEE international electric vehicle conference. IEEE, 2012: 1–8

  • Huang G, Lu T, Wang Y, Zheng L, Zhang H, Zhu M, Li W (2023) Research progress and prospect of high electrical resistivity Nd-Fe-B permanent magnetic materials. J Chin Soc Rare Earths (in Chinese)

  • Hyeon S, Kim C, Lee KS (2022) Thermal enhancement of an air-cooled motor with a flow guide. Int J Heat Mass Transfer 183:122228

    Article  Google Scholar 

  • Idoughi L, Mininger X, Bouillault F, Bernard L, Hoang E (2011) Thermal model with winding homogenization and FIT discretization for stator slot. IEEE Trans Magn 47(12):4822–4826

    Article  Google Scholar 

  • Jahanpanah J, Soleymani P, Karimi N, Babaie M, Saedodin S (2023) Transient cooling of a lithium-ion battery module during high-performance driving cycles using distributed pipes-A numerical investigation. J Energy Storage 74:109278

    Article  Google Scholar 

  • Jang JH, Chiu HC, Yan WM, Tsai MC, Wang PY (2015) Numerical study on electromagnetics and thermal cooling of a switched reluctance motor. Case Stud Therm Eng 6:16–27

    Article  Google Scholar 

  • Jiang X, Zhou G, Liu C (2017) Advantages of evaporative cooling technology in large generator-motor and its simulated test. Dongfang Electr Rev 31(02):38–42 (in Chinese)

    Google Scholar 

  • Kang M, Wang H, Guo L, Shi T, Xia C (2020) Self-circulation cooling structure design of permanent magnet machines for electric vehicle. Appl Therm Eng 165:114593

    Article  Google Scholar 

  • Kang M, Shi T, Guo L, Gu X, Xia C (2022) Thermal analysis of the cooling system with the circulation between rotor holes of enclosed PMSMs based on modified models. Appl Therm Eng 206:118054

    Article  Google Scholar 

  • Kim C, Lee KS (2017) Thermal nexus model for the thermal characteristic analysis of an open-type air-cooled induction motor. Appl Therm Eng 122:1108–1116

    Article  Google Scholar 

  • Kim C, Lee KS, Yook SJ (2016) Effect of air-gap fans on cooling of windings in a large-capacity, high-speed induction motor. Appl Therm Eng 100:658–667

    Article  Google Scholar 

  • Krasopoulos CT, Ioannidis AS, Kremmydas AF, Karafyllakis IA, Kladas AG (2022) Convection heat transfer coefficient regression models construction for fast high-speed motor thermal analysis. IEEE Trans Magn 58(11):1–5

    Article  Google Scholar 

  • Kuenzler M, Werner Q, Schaefer U (2020) Multidisciplinary analysis of permanent magnet machines considering thermal contact resistance. In: 2020 International conference on electrical machines (ICEM). IEEE, 1: 940–946.

  • Kumar A, Subudhi S (2019) Preparation, characterization and heat transfer analysis of nanofluids used for engine cooling. Appl Therm Eng 160:114092

    Article  Google Scholar 

  • La Rocca S, Pickering SJ, Eastwick CN, Gerada C, Rönnberg K (2019b) Fluid flow and heat transfer analysis of TEFC machine end regions using more realistic end-winding geometry. J Eng 2019(17):3831–3835

    Article  Google Scholar 

  • Lanping Z, Congxi J, Xin X, Zhigang Y (2019) The effects of oil cooling on the temperature field of out-rotor in-wheel motor under vehicle operation environment. Automot Eng 41(4):373–380 (in Chinese)

    Google Scholar 

  • Laskaris KI, Kladas AG (2012) Liquid cooled permanent-magnet traction motor design considering temporary overloading. In: 2012 XXth International conference on electrical machines. IEEE, 2677–2682

  • Lee KH, Cha HR, Kim YB (2016) Development of an interior permanent magnet motor through rotor cooling for electric vehicles. Appl Therm Eng 95:348–356

    Article  Google Scholar 

  • Li J, Fu J, Zhang P (2012) Numerical simulation on stator fluid field and temperature field on waterway blockage in turbogenerators. Gaodianya Jishu/high Volt Eng 38(6):1313–1320 (in Chinese)

    Google Scholar 

  • Li J, Tian X, Gu G (2018) Starting characteristic of soaked self circulation evaporative cooling system of wind power generator. Sci Technol Eng 18(4):268–272 (in Chinese)

    Google Scholar 

  • Li Y, Li C, Garg A, Gao L, Li W (2021) Heat dissipation analysis and multi-objective optimization of a permanent magnet synchronous motor using surrogate assisted method. Case Stud Therm Eng 27(3):101203

    Article  Google Scholar 

  • Li W, Cao Z, Zhang X (2021) Thermal analysis of the solid rotor permanent magnet synchronous motors with air-cooled hybrid ventilation systems. IEEE Trans Ind Electron 69(2):1146–1156

    Article  Google Scholar 

  • Li B, Yuan Y, Gao P, Zhang Z, Li G (2022) Cooling structure design for an outer-rotor permanent magnet motor based on phase change material. Therm Sci Eng Progress 34:101406

    Article  Google Scholar 

  • Li X, Wang Y, Wang X (2023) Influence of current harmonics on permanent magnet eddy current loss. Railw Locomot Car 43(6):97104 (in Chinese)

    MathSciNet  Google Scholar 

  • Li Y, Fan T, Li Q, Wen X (2016) Experimental investigation on heat transfer of directly-oil-cooled permanent magnet motor. In: 2016 19th international conference on electrical machines and systems (ICEMS). IEEE, 1–4.

  • Li Y, Fan T, Sun W, Li Q, Wen X (2016) Experimental research on the oil cooling of the end winding of the motor. In: 2016 IEEE energy conversion congress and exposition (ECCE). IEEE, 1–4

  • Li C, Guan Z, Li J, Zhao B, Ding X (2017) Optimal design of cooling system for water cooling motor used for mini electric vehicle. In: 2017 20th International conference on electrical machines and systems (ICEMS). IEEE, 1–4

  • Liang P, Pei Y, Chai F, Cheng S (2016) Equivalent stator slot model of temperature field for high torque-density permanent magnet synchronous in-wheel motors accounting for winding type. COMPEL Int J Comput Math Electr Electron Eng 35(2):713–727

    Article  Google Scholar 

  • Libin T, Yuejin Y (2023) Numerical simulation on flow field of motor annular water jacket and its cooling performance optimization. J Mech Sci Technol 37(8):4339–4348

    Article  Google Scholar 

  • Lim DH, Kim SC (2014) Thermal performance of oil spray cooling system for in-wheel motor in electric vehicles. Appl Therm Eng 63(2):577–587

    Article  Google Scholar 

  • Lin M, Le W, Lin K, Jia L, Wang S, Yang A, Tu Y (2021) Overview on research and development of thermal design methods of axial flux permanent magnet machines. Proc CSEE 41(06):1914–1929 (in Chinese)

    Google Scholar 

  • Lindh P, Petrov I, Jaatinen-Värri A, Grönman A, Martinez-Iturralde M, Satrústegui M, Pyrhönen J (2017) Direct liquid cooling method verified with an axial-flux permanent-magnet traction machine prototype. IEEE Trans Ind Electron 64(8):6086–6095

    Article  Google Scholar 

  • Lindh P, Petrov I, Pyrhönen J, Scherman E, Niemelä M, Immonen P (2019) Direct liquid cooling method verified with a permanent-magnet traction motor in a bus. IEEE Trans Ind Appl 55(4):4183–4191

    Article  Google Scholar 

  • Liu Z, Ruan L (2018) Design for gas-liquid-solid stator insulation system in the evaporative cooling turbogenerator. Electric Mach Control 22(12):77–84 (in Chinese)

    Google Scholar 

  • Liu J, Huang S, Cost R, Xu G (2010) Analysis of temperature field in a cycling oil cooled permanent magnet synchronous motor. Small Spl Electr Mach 43(05):10–12 (in Chinese)

    Google Scholar 

  • Liu C, Xu Z, Gerada D, Li J, Gerada C, Chong YC, Popescu M, Goss J, Staton D, Zhang H (2019) Experimental investigation on oil spray cooling with hairpin windings. IEEE Trans Ind Electron 67(9):7343–7353

    Article  Google Scholar 

  • Liu H, Ayat A, Wrobel R, Zhang Z (2019) Comparative study of thermal properties of electrical windings impregnated with alternative varnish materials. J Eng 2019(17):3736–3741

    Article  Google Scholar 

  • Liu X, Shi Y, Chu J, Xue S, Zhao Q, Wu X (2021) A new phase-change cooling method for the frequent start-stop electric motor. Appl Therm Eng 198:117504

    Article  Google Scholar 

  • Liu M, Wu T, Zheng R, Hu H, Zhan Y (2021) Calculation of stator core loss and efficiency of amorphous alloy high speed permanent magnet motor. Navig Control 20(05):137–147 (in Chinese)

    Google Scholar 

  • Liu C, Xu Z, Gerada D, Zhang F, Chong YC, Michon M, Goss J, Gerada C, Zhang H (2022) Experimental investigation of oil jet cooling in electrical machines with hairpin windings. IEEE Trans Transp Electrif 9(1):598–608

    Article  Google Scholar 

  • Liu Y, Cao J, Song Y, Gao Z, Li L (2023) Analysis of the immersion cooling of electric motors for hybrid aircraft. Process Saf Environ Protect 178:695–705

    Article  Google Scholar 

  • Liu M (2016) Temperature field study of directed oil-spraying PMSM. Master Thesis, Hefei University of Technology, China (in Chinese)

  • Lu Q, Zhang X, Chen Y, Huang X, Ye Y, Zhu Z (2014) Modeling and investigation of thermal characteristics of a water-cooled permanent-magnet linear motor. IEEE Trans Ind Appl 51(3):2086–2096

    Article  Google Scholar 

  • Lu Y, Mustafa A, Abdullah Rehan M, Razzaq S, Ali S, Shahid M, Waleed Adnan A (2019) The effects of water friction loss calculation on the thermal field of the canned motor. Processes 7(5):256

    Article  Google Scholar 

  • Madonna V, Giangrande, Walker A, Galea M (2018) On the effects of advanced end-winding cooling on the design and performance of electrical machines. In: 2018 XIII International conference on electrical machines (ICEM). IEEE, 311–317

  • Madonna V, Spagnolo C, Giangrande P, Galea M (2020) Improving performance and extending lifetime of PMSMs via advanced end-winding cooling. In: 2020 IEEE 29th international symposium on industrial electronics (ISIE). IEEE, 319–325

  • Mellor PH, Roberts D, Turner DR (1991) Lumped parameter thermal model for electrical machines of TEFC design. IEE Proc B Electr Power Appl 138(5):205–218

    Article  Google Scholar 

  • Mills AF (1999) Heat Transfer. Prentice Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Milton GW (1981) Bounds on the transport and optical properties of a two-component composite material. J Appl Phys 52(8):5294–5304

    Article  Google Scholar 

  • Miyamoto T, Matsusaka S, Kato K (2017) Cooling structure of rotary electric machine: U.S. Patent 9, 729, 027. 2017-8-8

  • Montanari GC, Simoni L (1993) Aging phenomenology and modeling. IEEE Trans Electr Insul 28(5):755–776

    Article  Google Scholar 

  • Montonen J, Nerg J, Polikarpova M, Pyrhönen J (2019) Integration principles and thermal analysis of an oil-cooled and-lubricated permanent magnet motor planetary gearbox drive system. IEEE Access 7:69108–69118

    Article  Google Scholar 

  • Montsinger VM (1930) Loading transformers by temperature. Trans Am Inst Electr Eng 49(2):776–790

    Article  Google Scholar 

  • Moreels D, Leijnen P (2018) High efficiency axial flux machines: why axial flux motor and generator technology will drive the next generation of electric machines. White Paper HEAF 2:1–20

    Google Scholar 

  • Murwamadala RD, Veeredhi VR (2023) Advances in thermal contact resistance studies. Proc Inst Mech Eng Part C J Mech Eng Sci 237(1):201–222

    Article  Google Scholar 

  • Nategh S, Wallmark O, Leksell M, Zhao S (2012) Thermal analysis of a PMaSRM using partial FEA and lumped parameter modeling. IEEE Trans Energy Convers 27(2):477–488

    Article  Google Scholar 

  • Nategh S, Huang Z, Krings A, Wallmark O, Leksell M (2013) Thermal modeling of directly cooled electric machines using lumped parameter and limited CFD analysis. IEEE Trans Energy Convers 28(4):979–990

    Article  Google Scholar 

  • Nategh S, Zhang H, Wallmark O, Boglietti A, Nassen T, Bazant M (2018) Transient thermal modeling and analysis of railway traction motors. IEEE Trans Industr Electron 66(1):79–89

    Article  Google Scholar 

  • Nategh S, Øvrebø S, Mahdavi S, Wallmark O (2015) Thermal modeling of a permanent magnet machine built using Litz wire. In: 2015 International conference on electrical systems for aircraft, railway, ship propulsion and road vehicles (ESARS). IEEE, 1–6.

  • Olfa M, Hizami RMA, Alejandro O, Vincent L (2016) Determination of thermal contact resistances for small TENV electrical machine. Sensors Transducers 198(3):44

    Google Scholar 

  • Park MH, Kim SC (2019) Thermal characteristics and effects of oil spray cooling on in-wheel motors in electric vehicles. Appl Therm Eng 152:582–593

    Article  Google Scholar 

  • Park MH, Kim SC (2023) Development and validation of lumped parameter thermal network model on rotational oil spray cooled motor for electric vehicles. Appl Therm Eng 225:120176

    Article  Google Scholar 

  • Park J, Han K, Choi HS, Park IS (2023) Cooling and dynamic performance of electric vehicle traction motor adopting direct slot cooling method. Int Commun Heat Mass Transfer 147:106970

    Article  Google Scholar 

  • Peng GAO, Yu-shuang ZHAO (2015) Key technology of high power density motor for electric vehi-cles. Trans China Electrotech Soc 30(6):53–59 (in Chinese)

    Google Scholar 

  • Piriyawong V, Thongpool V, Asanithi P, Limsuwan P (2012) Preparation and characterization of alumina nanoparticles in deionized water using laser ablation technique. J Nanomater 2012:1–6

    Article  Google Scholar 

  • Ponomarev P, Polikarpova M, Pyrhönen J (2012) Conjugated fluid-solid heat transfer modeling of a directly-oil-cooled PMSM using CFD. In: International symposium on power electronics power electronics, electrical drives, automation and motion. IEEE, 141–145

  • Ponomarev P, Polikarpova M, Pyrhönen J (2012) Thermal modeling of directly-oil-cooled permanent magnet synchronous machine. In: 2012 20th international conference on electrical machines. IEEE, 1882–1887

  • Popescu M, Staton DA, Boglietti A, Cavagnino A, Hawkins D, Goss J (2016) Modern heat extraction systems for power traction machines—a review. IEEE Trans Ind Appl 52(3):2167–2175

    Article  Google Scholar 

  • Putra N, Ariantara B (2017) Electric motor thermal management system using L-shaped flat heat pipes. Appl Therm Eng 126:1156–1163

    Article  Google Scholar 

  • Pyrhonen J, Lindh P, Polikarpova M, Kurvinen E, Naumanen V (2015) Heat-transfer improvements in an axial-flux permanent-magnet synchronous machine. Appl Therm Eng 76:245–251

    Article  Google Scholar 

  • Raj EFI, Appadurai M, Darwin S, Thanu MC (2023) Detailed study of efficient water jacket cooling system for induction motor drive used in electric vehicle. Int J Interact Design Manuf (IJIDeM) 17(3):1277–1288

    Article  Google Scholar 

  • Rama KS, Rama KA, Hanumanth RKS (2011) Reduction of motor fan noise using CFD and CAA simulations. Appl Acoust 72(12):982–992

    Article  Google Scholar 

  • Rehman Z, Seong K (2018) Three-D numerical thermal analysis of electric motor with cooling jacket. Energies 11(1):92

    Article  Google Scholar 

  • Robert C, Howey DA, McCulloch MD (2015) Predicting the temperature and flow distribution in a direct oil-cooled electrical machine with segmented stator. IEEE Trans Ind Electron 63(1):82–91

    Google Scholar 

  • La Rocca S, Pickering SJ, Eastwick CN, Gerada C, Ronnberg K (2019) Numerical study on the impact of end windings porosity on the fluid flow and heat transfer in a Totally Enclosed Fan-Cooled electrical machine. In: 2019 IEEE international electric machines and drives conference (IEMDC). IEEE, 2138–2143

  • Romanazzi P, Howey DA (2015) Air-gap convection in a switched reluctance machine. 2015 Tenth International Conference on Ecological Vehicles and Renewable Energies (EVER). IEEE, 1–7

  • Rostami N, Feyzi MR, Pyrhonen J, Parviainen A, Niemela M (2012) Lumped-parameter thermal model for axial flux permanent magnet machines. IEEE Trans Magn 49(3):1178–1184

    Article  Google Scholar 

  • Roy R, Ramasami S, Chokkalingam LN (2023) Review on thermal behavior and cooling aspects of axial flux permanent magnet motors-a mechanical approach. IEEE Access 11:6822–6836

    Article  Google Scholar 

  • Ruan L, Chen J, Gu G (2014) Comparison and analysis of stator’s air cooling and evaporative cooling method of 1000MW hydrogenerators. Adv Technol Electr Eng Energy 33(09):1–6 (in Chinese)

    Google Scholar 

  • Saleem A, Park MH, Ambreen T, Kim SC (2022) Optimization of oil flow distribution inside the in-wheel motor assembly of electric vehicles for improved thermal performance. Appl Therm Eng 201:117753

    Article  Google Scholar 

  • Satrústegui M, Martinez-Iturralde M, Ramos JC, Gonzalez P, Astarbe G, Elosegui I (2017) Design criteria for water cooled systems of induction machines. Appl Therm Eng 114:1018–1028

    Article  Google Scholar 

  • Shen J, Chen X, Cui Z (2021) Design and optimization of internal water cooling system of permanent magnet synchronous motor based on CFD. Chin J Appl Mech 38(02):630–637 (in Chinese)

    Google Scholar 

  • Shi Y, Wang J, Wang B (2020) Transient 3D lumped parameter and 3D FE thermal models of a PMASynRM under fault conditions with asymmetric temperature distribution. IEEE Trans Industr Electron 68(6):4623–4633

    Article  Google Scholar 

  • Shi W, Luo K, Zhang Z (2023) On-line temperature estimation of permanent magnet motor based on lumped parameter thermal network method. Trans China Electrotech Soc 38(10):2686–2697 (in Chinese)

    Google Scholar 

  • Sim J-H, Chai S-H, Kim D-M, Hong J-P (2013) Temperature prediction of oil-cooled IPMSM for in-wheel direct-drive through lumped parameter thermal model. In: 2013 international conference on electrical machines and systems (ICEMS). IEEE, 134–138

  • Simpson N, Wrobel R, Mellor PH (2013) Estimation of equivalent thermal parameters of impregnated electrical windings. IEEE Trans Ind Appl 49(6):2505–2515

    Article  Google Scholar 

  • Simpson N, Duggan T, Mellor PH, Booker JD. Measurement of the thermal characteristics of a stator-housing interface. In: 2017 IEEE 11th international symposium on diagnostics for electrical machines, power electronics and drives (SDEMPED), IEEE, 557–564

  • Sixel W, Liu M, Nellis G, Sarlioglu B (2020) Cooling of windings in electric machines via 3-D printed heat exchanger. IEEE Trans Ind Appl 56(5):4718–4726

    Article  Google Scholar 

  • Soleymani P, Saffarifard E, Jahanpanah J, Babaie M, Nourian A, Mohebbi R, Aakcha Z, Ma Y (2023) Enhancement of an air-cooled battery thermal management system using liquid cooling with CuO and Al2O3 nanofluids under steady-state and transient conditions. Fluids 8(10):261

    Article  Google Scholar 

  • Song K, Chen W, Liu Y (2012) Oil-cooled structure design of switched reluctance starter/generator on multi-field coupling. Electr Mach Control Appl 39(06):6–11 (in Chinese)

    Google Scholar 

  • Song Z, Huang R, Wang W, Liu S, Liu C (2022) An improved dual iterative transient thermal network model for PMSM with natural air cooling. IEEE Trans Energy Convers 37(4):2588–2600

    Article  Google Scholar 

  • Song SJ, Ryu CM, Moon SJ (2024) Simplified thermal model for open type 1.5 kW synchronous reluctance motor using thermal equivalent circuit and finite element method. Therm Sci Eng Progress 48:102396

    Article  Google Scholar 

  • Staton D, Boglietti A, Cavagnino A (2005) Solving the more difficult aspects of electric motor thermal analysis in small and medium size industrial induction motors. IEEE Trans Energy Convers 20(3):620–628

    Article  Google Scholar 

  • Su Y, Xie G (2021) Analysis and application of permanent magnet segmentation to reduce eddy current loss of permanent magnet motor. Electr Mach Control Appl 48(04):71–76 (in Chinese)

    Google Scholar 

  • Sukkar KA, Karamalluh AA, Jaber TN (2019) R2019- by the effect of CuO and TiO2 nano-additives. Al-Khwarizmi Eng J 15(2):24–33

    Article  Google Scholar 

  • Sun Y, Zhang S, Yuan W, Tang Y, Li J, Tang K (2019) Applicability study of the potting material based thermal management strategy for permanent magnet synchronous motors. Appl Therm Eng 149:1370–1378

    Article  Google Scholar 

  • Sun Y, Zhang S, Chen G, Tang Y, Liang F (2020) Experimental and numerical investigation on a novel heat pipe based cooling strategy for permanent magnet synchronous motors. Appl Therm Eng 170:114970

    Article  Google Scholar 

  • Swales SH, Turnbull PH, Schulze B, Poskie FR, Deneszczuk WC (2012) Oil cooled motor/generator for an automotive powertrain: U.S. Patent 8, 169, 110. 2012-5-1.

  • Taewook H, Yerim K, Seok KN, Hee PS, Han LS, Kyu KD, Sun RH (2021) Cooling effect of oil cooling method on electric vehicle motors with hairpin winding. J Mech Sci Technol 35(1):407–415

    Article  Google Scholar 

  • Tang Y, Chen L, Chai F, Chen T (2019) Thermal modeling and analysis of active and end windings of enclosed permanent-magnet synchronous in-wheel motor based on multi-block method. IEEE Trans Energy Convers 35(1):85–94

    Article  Google Scholar 

  • Tang Y, Sun Y, Guo Z, Zhang S, Yuan W, Tang H, Liang F (2021) Development status and perspective trend of motor cooling systems. China Mech Eng 32(10):1135 (in Chinese)

    Google Scholar 

  • Tang C, Yu Z, Fu J, Yang J (2023) Analysis and optimization of an axial-radial hybrid ventilation generator’s cooling structure. Case Stud Therm Eng 47:103068

    Article  Google Scholar 

  • Thao LLH, Messine F, Hénaux C, Mariani GB, Voyer N, Mollov S (2018) 3D Electromagnetic and thermal analysis for an optimized wound rotor synchronous machine. In: 2018 XIII International conference on electrical machines (ICEM). IEEE, 455–460.

  • Tikadar A, Kim JW, Joshi Y, Kumar S (2021) Flow-assisted evaporative cooling for electric motor. IEEE Trans Transp Electrif 8(1):1128–1143

    Article  Google Scholar 

  • Tikadar A, Johnston D, Kumar N, Joshi Y, Kumar S (2021) Comparison of electro-thermal performance of advanced cooling techniques for electric vehicle motors. Appl Therm Eng 183:116182

    Article  Google Scholar 

  • Tong W, Sun R, Li S, Tang R (2021) Loss and thermal analysis for high-speed amorphous metal PMSMs using 3-D electromagnetic-thermal bi-directional coupling. IEEE Trans Energy Convers 36(4):2839–2849

    Article  Google Scholar 

  • Tovar-Barranco A, López-de-Heredia A, Villar I, Briz F (2020) Modeling of end-space convection heat-transfer for internal and external rotor PMSMs with fractional-slot concentrated windings. IEEE Trans Ind Electron 68(3):1928–1937

    Article  Google Scholar 

  • Trigeol JF, Bertin Y, Lagonotte P (2006) Thermal modeling of an induction machine through the association of two numerical approaches. IEEE Trans Energy Convers 21(2):314–323

    Article  Google Scholar 

  • Ulbrich S, Kopte J, Proske J (2017) Cooling fin optimization on a TEFC electrical machine housing using a 2-D conjugate heat transfer model. IEEE Trans Ind Electron 65(2):1711–1718

    Article  Google Scholar 

  • Vansompel H, Hemeida A, Sergeant P (2017) Stator heat extraction system for axial flux yokeless and segmented armature machines. In: 2017 IEEE International electric machines and drives conference (IEMDC), IEEE, pp. 1–7

  • Wang XY, Gao P (2016) Analysis of 3-D temperature field of in-wheel motor with inner-oil cooling for electric vehicle. Electr Mach Control 20(3):37–42 (in Chinese)

    MathSciNet  Google Scholar 

  • Wang X, Gao P (2016a) Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor. Trans China Electrotech Soc 31(16):26–33 (in Chinese)

    Google Scholar 

  • Wang J, Chen Z, Dong H, Tang B (1988) Thermal state analysis of three-phase oil-cooled motor. Electric Mach Control Appl 4(06):6–12 (in Chinese)

    Google Scholar 

  • Wang S, Li Y, Li Y, Wang J, Xiao X, Guo W (2016) Transient cooling effect analyses for a permanent-magnet synchronous motor with phase-change-material packaging. Appl Therm Eng 109:251–260

    Article  Google Scholar 

  • Wang D, Liang Y, Li C, Yang P, Zhou C, Gao L (2020) Thermal equivalent network method for calculating stator temperature of a shielding induction motor. Int J Therm Sci 147:106149

    Article  Google Scholar 

  • Wang H, Liu X, Kang M, Guo L, Li X (2022) Oil injection cooling design for the IPMSM applied in electric vehicles. IEEE Trans Transp Electrif 8(8):3427–3440

    Article  Google Scholar 

  • Wang R, Fan X, Li D, Qu R, Li L, Zou T (2022a) Convective heat transfer characteristics on end-winding of stator immersed oil-cooled electrical machines for aerospace applications. IEEE Trans Transp Electrif 8(4):4265–4278

    Article  Google Scholar 

  • Wang R, Fan X, Li D, Qu R, Liu Z, Li L (2022b) Comparison of heat transfer characteristics of the hollow-shaft oil cooling system for high-speed permanent magnet synchronous machines. IEEE Trans Ind Appl 58(5):6081–6092

    Article  Google Scholar 

  • Wang Y, Li M, Wang R, Hou G, Chang W (2023) Design and optimization of driving motor cooling water pipeline structure based on a comprehensive evaluation method and CNN-PSO. Prime-Adv Electr Eng Electron Energy 3:e100125

    Article  Google Scholar 

  • Wang Y, Ting Z, Weiwei G, Jian G, Yaojie S (2023) Cooling system analysis of an enclosed yokeless stator for high-power axial flux PM motor with distributed winding. IEEE Trans Ind Electron 99:1–10

    Google Scholar 

  • Wang H, Zhang C, Guo L, Li X (2024) Novel revolving heat pipe cooling structure of permanent magnet synchronous motor for electric vehicle. Appl Therm Eng 236:121641

    Article  Google Scholar 

  • Wang H, Li W, Guo H, Yang J, Gu G (2013) Study of large wind power generator with evaporative cooling system. In: 2013 International conference on electrical machines and systems (ICEMS). IEEE, 152–155

  • Wang P, Li W, Diao X (2017) Hydrogen-cooled generator hydrogen quality cloud monitoring system based on ARM. In: 2017 Chinese automation congress (CAC). IEEE, 1106–1109

  • Wang R, Fan X, Li D, Qu R (2020) Comparison of two hollow-shaft liquid cooling methods for high speed permanent magnet synchronous machines. In: 2020 IEEE energy conversion congress and exposition (ECCE). IEEE 3511–3517

  • Wang Y (2017) Research on oil cooling in groove system of high torque density concentrated permanent magnet motor. Master Thesis, Harbin Institute of Technology, China (In Chinese)

  • Wei R, Wang B, Ye Z (2018a) Numerical study on partition of axial fuel-cooling case on electric fuel pump. J Mech Electr Eng 35(10):1068–1072 (in Chinese)

    Google Scholar 

  • Wei R, Wang B, Ye Z (2018b) Numerical study of electric fuel pump based on fuel distribution and double spiral fuel cooling groove. Aeronaut Sci Technol 29(11):66–71 (in Chinese)

    Google Scholar 

  • Wei R (2020) Numerical simulation of fluid-solid coupling characteristics of fuel-cooled shell of electric fuel pump and optimization. Master Thesis, Nanjing University of Aeronautics and Astronautics. (In Chinese)

  • Weili L, Jichao H, Xingfu Z, Yong L (2013a) Calculation of ventilation cooling, three-dimensional electromagnetic fields, and temperature fields of the end region in a large water–hydrogen–hydrogen-cooled turbogenerator. IEEE Trans Ind Electron 60(8):3007–3015

    Article  Google Scholar 

  • Weili L, Jichao H, Feiyang H, Xingfu Z, Yihuang Z, Yong L (2013b) Influence of the end ventilation structure change on the temperature distribution in the end region of large water–hydrogen–hydrogen cooled turbogenerator. IEEE Trans Energy Convers 28(2):278–288

    Article  Google Scholar 

  • Wen J, Zheng J (2015) Numerical analysis of the external wind path for medium-size high-voltage asynchronous motors. Appl Therm Eng 90:869–878

    Article  Google Scholar 

  • Wrobel R, Ayat R, Baker JL (2017) Analytical methods for estimating equivalent thermal conductivity in impregnated electrical windings formed using Litz wire. In: 2017 IEEE international electric machines and drives conference (IEMDC). IEEE, 1–8

  • Wu X, Li B, Gerada D, Huang K, Stone I, Worrall S, Yan Y (2022) A critical review on thermal management technologies for motors in electric cars. Appl Therm Eng 201:117758

    Article  Google Scholar 

  • Wu S, Hao D, Tong W (2022a) Temperature field analysis of mine flameproof outer rotor permanent magnet synchronous motor with different cooling schemes. CES Trans Electr Mach Syst 6(2):162–169

    Article  Google Scholar 

  • Wu S, Hao D, Tong W (2022b) Thermal calculation of high speed permanent magnet synchronous motor based on equivalent thermal network and CFD method. Electr Mach Control 26(07):29–36 (in Chinese)

    Google Scholar 

  • Xia Y, Han Y, Xu Y, Ai M (2019) Analyzing temperature rise and fluid flow of high-power-density and high-voltage induction motor in the starting process. IEEE Access 7:35588–35595

    Article  Google Scholar 

  • Xia Y, Lv S, Jing B, Zhou Z (2023) Improvement of heat dissipation structure of low speed permanent-magnet motor. IEEE Access. 11:51789–51797

    Article  Google Scholar 

  • Xiaomei L, Yu H, Shi Z, Huang L, Xia T, Guo R (2017) Porous metal model for calculating slot thermal conductivity coefficient of electric machines. Appl Therm Eng 111:981–988

    Article  Google Scholar 

  • Xie G, Chen Z, Wang J, Tang B (1989) Research on thermal state of three-phase oil-cooled motor. Electric Mach Control Appl 4(1):7–11

    Google Scholar 

  • Xie Y, Guo J, Chen P, Li Z (2018) Coupled fluid-thermal analysis for induction motors with broken bars operating under the rated load. Energies 11(8):2024

    Article  Google Scholar 

  • Xu X, Ge B, Tao D, Han J, Wang L (2019) Effect of helium on temperature rise of helium blower drive motor in high-temperature gas-cooled reactor. Appl Therm Eng 159:113888

    Article  Google Scholar 

  • Xu Z, Xu Y, Liu W, Wang Y (2022) Global fluid flow and heat transfer characteristics analysis of an open air-cooled drive motor for drilling application. Case Stud Therm Eng 37:102254

    Article  Google Scholar 

  • Xu Y, Xu Z, Zhao Q, Wang Y (2023) Global domain fluid-thermal coupling modeling method and characteristics analysis for large capacity motor. Case Stud Therm Eng 44:102860

    Article  Google Scholar 

  • Xu Z, Xu Y, Liu W, Wang Y (2023b) Stator winding hotspot temperature rise characteristic study of an axially forced air-cooled motor with air deflector. Appl Therm Eng 224:120108

    Article  Google Scholar 

  • Xu Y, Xu Z, Wang H, Liu W (2024) Research on magnetic-fluid-thermal-stress multi-field bidirectional coupling of high speed permanent magnet synchronous motors. Case Stud Therm Eng 54:104012

    Article  Google Scholar 

  • Xu Z, Xu Y, Gai Y, Liu W (2023) Thermal management of drive motor for transportation: analysis methods, key factors in thermal analysis, and cooling methods: a review. IEEE Trans Transp Electrif

  • Yamagishi Y, Idoguchi R, Hirano H, Kawamura T (2007) Cooling system for electric motor of vehicle: U.S. Patent 7, 156, 195. 2007-1-2

  • Yan L, Dong Z, Zhang S (2021) Thermal analysis of a novel linear oscillating machine based on direct oil-cooling windings. IEEE Trans Energy Convers 37(2):1042–1051

    Article  Google Scholar 

  • Yang Z, Feng G (2018) Application and research of oil-filled cooling technologies in coal mining machine motors. Coal Mine Mach 39(09):131–133 (in Chinese)

    Google Scholar 

  • Yang W, Zhou Z, Zhengzhen L (2020) Research on temperature field of hub motor with oil cooling temperature and flow velocity. Micromotors 53(01):31–34 (in Chinese)

    Google Scholar 

  • Yang G, Liu Y, Sun Q, Qiao J, Wang T (2023) Numerical simulation on the flow and temperature field in the high-power motor. IEEE Access 11:82830–82837

    Article  Google Scholar 

  • Yang N (2020) Study on oil-cooled permanent magnet synchronous motor of electric vehicle with flat wire. Master Thesis, Harbin Institute of Technology, China, (in Chinese)

  • Yao T, Hou Z, Gu G (2008) Application of evaporative cooling technique to large turbo generator. Trans China Electrotech Soc 23(02):1–5 (in Chinese)

    Google Scholar 

  • Ye L, Qi L, Tao F, Wen X (2023) Heat dissipation design of end winding of permanent magnet synchronous motor for electric vehicle. Energy Rep 9:282–288

    Article  Google Scholar 

  • Yu L, Liu D (2013) Study of the thermal effectiveness of laminar forced convection of nanofluids for liquid cooling applications. IEEE Trans Compon Packag Manuf Technol 3(10):1693–1704

    Article  Google Scholar 

  • Yu Z, Li Y, Jing Y, Jin W (2022) Cooling system of outer rotor SPMSM for a two-seater all-electric aircraft based on heat pipe technology. IEEE Trans Transp Electrif 8(2):1656–1664

    Article  Google Scholar 

  • Yu S, Yang J, Yuan J (2013) Research about the evaporative cooling sleeve of 3.6 MW Wind generator stator. In: 2013 International conference on electrical machines and systems (ICEMS). IEEE, 2013: 1441–1444

  • Yuxiang C, Fei X, Linpei Z, Xiong L (2020) Study on flow distribution characteristics of injection holes for oil-cooled motor. Chin Hydraul Pneum 08:22–28 (in Chinese)

    Google Scholar 

  • Zhang F, Yu Z, Wang D (2015) Simulation analysis of 3D thermal field in the stator of motor with forced evaporative cooling system. Trans China Electrotech Soc 6:488–493 (in Chinese)

    Google Scholar 

  • Zhang F, Du G, Wang T, Wang F, Cao W, Kirtley JL (2015) Electromagnetic design and loss calculations of a 1.12-MW high-speed permanent-magnet motor for compressor applications. IEEE Trans Energy Convers 31(1):132–140

    Article  Google Scholar 

  • Zhang Q, Li Z, Liu Y, Dong X, Xie M (2021) Multi-field coupling analysis method of oil-filled underwater induction motor cooling system. Proc CSEE 41(08):2867–2877

    Google Scholar 

  • Zhang F, Gerada D, Xu Z, Liu C, Zhang H, Zou T, Chong YC, Gerada C (2021) A thermal modeling approach and experimental validation for an oil spray-cooled hairpin winding machine. IEEE Trans Transp Electrif 7(4):2914–2926

    Article  Google Scholar 

  • Zhang C, Zhang X, Zhao F, Gerada D, Li L (2022) Improvements on permanent magnet synchronous motor by integrating heat pipes into windings for solar unmanned aerial vehicle. Green Energy Intell Transp 1(1):100011

    Article  Google Scholar 

  • Zhang M, Li W, Xie W, Tang H, Wu Z (2023) Health diagnosis of permanent magnets under different cooling system effectiveness in high-speed permanent magnet motors for electric vehicles. J Power Electron 23(3):533–542

    Article  Google Scholar 

  • Zhang C, Guo F, Dong Y (2019) Oil-water composite cooling method of hub motor for electric vehicles. In: Proceedings of the 2nd International Conference on Electrical and Electronic Engineering (EEE 2019), Hangzhou, China. 2019: 26–27

  • Zhao H, Zuo W, Li Q, Cheng Q, Pan N, Zhou K (2023) Thermal–hydraulic performance optimization of the spiral cooling channel in surface type permanent magnet synchronous motor. J Therm Anal Calorim 148(19):10345–10355

    Article  Google Scholar 

  • Zhou C, Ji Z, Xia Y, Ru G, Wang T, Wang W, Li G (2018) Study on ATF oil resistant insulating material and system for electric vehicle motors. Insul Mater 51(02):12–16 (in Chinese)

    Google Scholar 

  • Zhou P, Kalayjian NR (2009) Grant Dufresne, Augenbergs Peter Koch. Liquid cooled rotor assembly: U.S. Patent 7, 489, 057. 2009-2-10

  • Zhou Y, Wu Y, Yu S, Zhang Z, Fang Y, Zhang J (2023) Online estimation of transient temperature of permanent magnet synchronous motor based on LPTN. In: 2023 IEEE 6th student conference on electric machines and systems (SCEMS). IEEE, 2023: 1–5

  • Zhu T, Zhang Y, Li Q, Wang Y, Geng W (2022) Overview of hybrid cooling system for high power density motor. Electr Eng 23(08):1–16 (in Chinese)

    Google Scholar 

  • Zhuang X, Chen H (1989) The solution of 3-D temperature distribution in a cycling oil cooled aircraft ac generator by network topology method. Acta Aeronaut Astronaut Sinica 03:143–150 (in Chinese)

    Google Scholar 

  • Zutao C, Yu Z, Fu J, Yang J (2024) Analysis and design of air-heat pipe composite cooling of high power density motor. Appl Therm Eng 236:121495

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 52077217). The authors would like to express their gratitude to the reviewers for their meticulous, impartial, and valuable feedback, which has helped to improve and refine this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Zhongjun.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chenqi, T., Zhongjun, Y., Zhixin, L. et al. Research Status and Development Trends of Thermal Management Technologies for Motors. Iran J Sci Technol Trans Mech Eng (2024). https://doi.org/10.1007/s40997-024-00755-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40997-024-00755-0

Keywords

Navigation