Skip to main content
Log in

Multi-scale Modeling and Damage Analysis of Carbon Nanotube–Carbon Fiber-Reinforced Polymeric Composites

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In the present study, the initiation and propagation of the damage in open-hole nano-composite laminates reinforced with carbon nanotube (CNT) and carbon fiber (CF) have been investigated using a multi-scale method. The fiber and matrix failure initiation is determined using Hashin-type 3D criteria, and the subsequent propagation is modeled using material-degradation law based on two methods. The computational models for the progressive damage modeling are implemented in the finite element (FE) code ABAQUS using user-defined field variable subroutine USDFLD. In order to estimate three-component nano-composite properties, first, the mechanical properties of CNT-reinforced polymeric nano-composite at a weight fraction of 0.5, 1, and 2% have been calculated using Molecular Dynamics (MD) method. Afterward, the CNT-reinforced polymeric nano-composite as an equivalent resin has been combined to a 45% volume fraction of CF, and the mechanical properties of the micro-scale three-component polymeric nano-composite have been calculated by applying periodic boundary conditions to the FE method. The required strength properties have also been calculated analytically using micromechanical equations. Subsequently, the damage and failure in nano-composite laminates containing a central hole subjected to uniaxial tension are simulated and analyzed. The results show the significant effect of CNT in increasing strength, improving the mechanical properties, and increasing damage resistance in three-component nano-composites. Numerical results also show that the damage model can accurately predict the behavior of progressive damage qualitatively and quantitatively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

Download references

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Jamal-Omidi.

Ethics declarations

Conflict of interest

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soleimany, M.R., Jamal-Omidi, M., Nabavi, S.M. et al. Multi-scale Modeling and Damage Analysis of Carbon Nanotube–Carbon Fiber-Reinforced Polymeric Composites. Iran J Sci Technol Trans Mech Eng 47, 203–218 (2023). https://doi.org/10.1007/s40997-022-00509-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-022-00509-w

Keywords

Navigation