Skip to main content
Log in

LBM Investigation of the Droplet Displacement and Rubbing on a Vertical Wall by a Modified Pseudopotential Model

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, the displacement and deformation of a two-dimensional droplet on a vertical wall are examined using a modified pseudopotential model and imposing the multi-relaxation time into the collision term. The selected model guarantees the thermodynamic consistency adjusting proper values for the constant of the potential function k and the weighting factor for the force term, A. Also, it is possible to add adhesion forces and create different contact angles defining the index function for the solid points. Accordingly, non-dimensional parameters of Reynolds number, Weber number, Froude number, and density ratio are defined under the influence of the gravitational force and the uniform vapor flow. Results show that the change of the each dimensionless numbers affects the slip ratio between the droplet and vapor. It is also observed that in addition to the effects of viscous and gravitational forces, the change of the contact angle plays a significant role in the displacement and velocity of the droplet. The results show that reducing the contact angle increases the surface wettability and decreases the droplet velocity. It is seen that by decreasing the intermolecular forces at the Weber number of 62.36 and contact angle of 150°, the droplet begins to decay. Also, it is concluded that the droplet rubbing on the solid surface weakens the slip ratio in all cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Bhardwaj S, Dalal A (2018) Mesoscopic analysis of three-dimensional droplet displacement on wetted grooved wall of a rectangular channel. Eur J Mech-B/Fluids 67:35–53

    Article  MathSciNet  Google Scholar 

  • Binesh A, Mousavi S, Kamali R (2015) Effect of temperature-dependency of Newtonian and non-Newtonian fluid properties on the dynamics of droplet impinging on hot surfaces. Int J Mod Phys C 26(9):1550106

    Article  Google Scholar 

  • Chen L, Kang Q, Mu Y, He Y-L, Tao W-Q (2014) A critical review of the pseudopotential multiphase lattice Boltzmann model: methods and applications. Int J Heat Mass Transf 76:210–236

    Article  Google Scholar 

  • Gunstensen AK, Rothman DH, Zaleski S, Zanetti G (1991) Lattice Boltzmann model of immiscible fluids. Phys Rev A 43(8):4320

    Article  Google Scholar 

  • He X, Shan X, Doolen GD (1998) Discrete Boltzmann equation model for nonideal gases. Phys Rev E 57(1):R13

    Article  Google Scholar 

  • Huang H, Sukop M, Lu X (2015) Multiphase lattice Boltzmann methods: theory and application. Wiley

    Book  Google Scholar 

  • Kang Q, Zhang D, Chen S (2002) Displacement of a two-dimensional immiscible droplet in a channel. Phys Fluids 14(9):3203–3214

    Article  Google Scholar 

  • Kang Q, Zhang D, Chen S (2005) Displacement of a three-dimensional immiscible droplet in a duct. J Fluid Mech 545:41–66

    Article  MathSciNet  Google Scholar 

  • Khojasteh D, Mousavi SM, Kamali R (2017) CFD analysis of Newtonian and non-Newtonian droplets impinging on heated hydrophilic and hydrophobic surfaces. Indian J Phys 91(5):513–520

    Article  Google Scholar 

  • Khojasteh D, Manshadi MKD, Mousavi SM, Sotoudeh F, Kamali R, Bordbar A (2020) Electrically modulated droplet impingement onto hydrophilic and (super) hydrophobic solid surfaces. J Braz Soc Mech Sci Eng 42(4):1–11

    Article  Google Scholar 

  • Kupershtokh A (2003) Calculations of the action of electric forces in the lattice Boltzmann equation method using the difference of equilibrium distribution functions. In: Proc. 7th int. conf. on modern problems of electrophysics and electrohydrodynamics of liquids. St. Petersburg State University, St. Petersburg, pp 155–155

  • Kupershtokh A (2004) New method of incorporating a body force term into the lattice Boltzmann equation. In: Proc. 5th international EHD workshop. University of Poitiers, Poitiers, pp 241–246

  • Kupershtokh A, Stamatelatos C, Agoris D (2005) Stochastic model of partial discharge activity in liquid and solid dielectrics. In: IEEE international conference on dielectric liquids, 2005. ICDL. IEEE, pp 135–138

  • Kupershtokh A, Karpov D, Medvedev D, Stamatelatos C, Charalambakos V, Pyrgioti E, Agoris D (2007) Stochastic models of partial discharge activity in solid and liquid dielectrics. IET Sci Meas Technol 1(6):303–311

    Article  Google Scholar 

  • Kupershtokh A, Medvedev D, Karpov D (2009) On equations of state in a lattice Boltzmann method. Comput Math Appl 58(5):965–974

    Article  MathSciNet  Google Scholar 

  • Kupershtokh AL, Medvedev DA, Gribanov II (2018) Thermal lattice Boltzmann method for multiphase flows. Phys Rev E 98(2):023308

    Article  Google Scholar 

  • Mazloomi A, Moosavi A (2013) Thin liquid film flow over substrates with two topographical features. Phys Rev E 87(2):022409

    Article  Google Scholar 

  • Mohamad A (2011) Lattice Boltzmann method. Springer

    Book  Google Scholar 

  • Nemati M, Abady ARSN, Toghraie D, Karimipour A (2018) Numerical investigation of the pseudopotential lattice Boltzmann modeling of liquid–vapor for multi-phase flows. Phys A 489:65–77

    Article  MathSciNet  Google Scholar 

  • Shabankareh IZ, Mousavi SM, Kamali R (2017) Numerical study of non-Newtonian droplets electrocoalescence. J Braz Soc Mech Sci Eng 39(10):4207–4217

    Article  Google Scholar 

  • Shan X, Chen H (1993) Lattice Boltzmann model for simulating flows with multiple phases and components. Phys Rev E 47(3):1815

    Article  Google Scholar 

  • Son S, Chen L, Derome D, Carmeliet J (2015) Numerical study of gravity-driven droplet displacement on a surface using the pseudopotential multiphase lattice Boltzmann model with high density ratio. Comput Fluids 117:42–53

    Article  MathSciNet  Google Scholar 

  • Swift MR, Osborn W, Yeomans J (1995) Lattice Boltzmann simulation of nonideal fluids. Phys Rev Lett 75(5):830

    Article  Google Scholar 

  • Taghilou M, Rahimian MH (2014) Investigation of two-phase flow in porous media using lattice Boltzmann method. Comput Math Appl 67(2):424–436

    Article  MathSciNet  Google Scholar 

  • Zhang R, Chen H (2003) Lattice Boltzmann method for simulations of liquid-vapor thermal flows. Phys Rev E 67(6):066711

    Article  Google Scholar 

  • Zhang L-Z, Yuan W-Z (2018) A lattice Boltzmann simulation of coalescence-induced droplet jumping on superhydrophobic surfaces with randomly distributed structures. Appl Surf Sci 436:172–182

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Taghilou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taghilou, M., Zarei, S. LBM Investigation of the Droplet Displacement and Rubbing on a Vertical Wall by a Modified Pseudopotential Model. Iran J Sci Technol Trans Mech Eng 45, 755–768 (2021). https://doi.org/10.1007/s40997-021-00435-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-021-00435-3

Keywords

Navigation