Skip to main content
Log in

Optimized Radius of Influence Domain in Meshless Approach for Modeling of Large Deformation Problems

  • Technical Note
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The determination of the optimized size of the support domain remains still an open question in meshless methods because there is no theoretical value or validated formula. This optimal value depends on density and distribution of points and also on the nature of the considered problem, e.g., boundary value problems, integral equations, delay-differential equations, etc. Since no theoretical value of the support domain size has been determined, finding the optimized size of the influence domain requires several tests and experiments. Despite its high computational cost, this classical method is not efficient and its optimal choice is not determined precisely. Moreover, the optimized size of the support domain varies with respect to the simulation parameters and/or the physical variables during the simulation evolution; it can be very difficult to control the optimal size using the classical method. The present investigation discusses an efficient meshfree method based on the strong form of Moving Least Square (MLS) method. The numerical solution of the proposed approach was carried out using an optimization approach to calculate the optimized radius of the influence domain. The numerical results of the proposed approach were tested and compared to the Finite Element Method (FEM) and to the MLS approach based on a fixed support domain. The CPU time of the present approach and the MLS approach with a fixed support domain are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Alfaro I, Yvonnet J, Cueto E, Chinesta F, Doblar M (2006) Meshless methods with application to metal forming. Computer Methods Appl Mech Eng 195:6661–6675

    Article  MathSciNet  MATH  Google Scholar 

  • Askour O, Mesmoudi S, Braikat B (2020) On the use of radial point interpolation method (RPIM) in a high order continuation for the resolution of the geometrically nonlinear elasticity problems. Eng Anal Bound Elem 110:69–79

    Article  MathSciNet  MATH  Google Scholar 

  • Alfaro I, Racineux G, Poitou A, Cueto E, Chinesta F (2008) Numerical simulation of friction stir welding by natural element methods. Int J Mater Form 1:1079–1082

    Article  Google Scholar 

  • Belaasilia Y, Timesli A, Braikat B, Jamal M (2017) A numerical mesh-free model for elasto-plastic contact problems. Eng Anal Bound Elem 82:68–78

    Article  MathSciNet  MATH  Google Scholar 

  • Belaasilia A, Braikat B, Jamal M (2018) High order mesh-free method for frictional contact. Eng Anal Bound Elem 94:103–112

    Article  MathSciNet  MATH  Google Scholar 

  • Buffa G, Hu J, Shivpuri R, Fratini L (2006) A continuum based on fem model for friction stir welding model development. Mater Sci Eng 419:389–396

    Article  Google Scholar 

  • Belinha J, Dinis LM (2006) Elastoplastic analysis of plates by the element free Galerkin method. Int J Comput Aided Eng Softw 23:525–551

    Article  MATH  Google Scholar 

  • Belinha J, Dinis LM (2007) Nonlinear analysis of plates and laminates using the element free Galerkin method. Compos Struct 78:337–350

    Article  Google Scholar 

  • Cochelin B (1994) A path-following technique via an asymptotic-numerical method. Comput Struct 53:1181–1192

    Article  MATH  Google Scholar 

  • Chan TFC, Keller HB (1982) Arc-length continuation and multigrid techniques for nonlinear elliptic eigenvalue problems. SIAM J. Sci. Stat. Comput. 3:173–194

    Article  MathSciNet  MATH  Google Scholar 

  • Chen W, Hong Y, Lin J (2018) The sample solution approach for determination of the optimal shape parameter in the multiquadric function of the Kansa method. Comput Math Appl 75:2942–2954

    Article  MathSciNet  MATH  Google Scholar 

  • Chen JS, Pan C, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139:195–227

    Article  MathSciNet  MATH  Google Scholar 

  • Chen SS, Liu YH, Cen ZZ (2008) Lower bound shakedown analysis by using the element free Galerkin method and non-linear programming. Comput Methods Appl Mech Eng 197:3911–3921

    Article  MATH  Google Scholar 

  • Dickson KI, Kelley CT, Ipsen ICF, Kevrekidis IG (2006) Condition estimates for pseudo-arclength continuation. SIAM J Numer Anal 45:263–276

    Article  MathSciNet  MATH  Google Scholar 

  • Fouaidi M, Hamdaoui A, Jamal M, Braikat B (2019) A high order mesh-free method for buckling and post-buckling analysis of shells. Eng Anal Bound Elem 99:89–99

    Article  MathSciNet  MATH  Google Scholar 

  • Govaerts WJF (2000) Numerical methods for bifurcations of dynamic equilibria. SIAM, Philadelphia

    Book  MATH  Google Scholar 

  • Hon YC (2002) A quasi-radial basis functions method for American options pricing. Comput Math Appl 43:513–524

    Article  MathSciNet  MATH  Google Scholar 

  • Kargarnovin MH, Toussi HE, Fariborz SJ (2004) Elasto-plastic element-free galerkin method. Comput Mech 33:206–214

    Article  MATH  Google Scholar 

  • Krongauz Y, Belytschko T (1996) Enforcement of essentialboundary conditions in meshless approximations using finiteelements. Comput Methods Appl Mech Eng 131:133–145

    Article  MATH  Google Scholar 

  • Keller HB (1977) Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems. In: Applications of Bifurcation Theory, P. Rabinowitz ed., Academic Press

  • Liu GR (2002) Mesh free methods: moving beyond the finite elementmethod. CRC Press, Boca Raton, Fla, USA

    Book  Google Scholar 

  • Li DM, Featherston CA, Wu Z (2020) An element-free study of variable stiffness composite plates with cutouts for enhanced buckling and post-buckling performance. Comput Methods Appl Mech Eng 371:113314

    Article  MathSciNet  MATH  Google Scholar 

  • Li DM, Kong LH, Liu JH (2020) A generalized decoupling numerical framework for polymeric gels and its element-free implementation. Int J Numer Methods Eng 121:2701–2726

    Article  MathSciNet  Google Scholar 

  • Li DM, Tian LR (2018) Large deformation analysis of gel using the complex variable element-free Galerkin method. Appl Math Model 61:484–497

    Article  MathSciNet  MATH  Google Scholar 

  • Li DM, Zhang LW, Liew KM (2015) A three-dimensional element-free framework for coupled mechanical-diffusion induced nonlinear deformation of polymeric gels using the IMLS-Ritz method. Comput Methods Appl Mech Eng 296:232–247

    Article  MathSciNet  MATH  Google Scholar 

  • Li DM, Zhang Z, Liew KM (2014) A numerical framework for two-dimensional large deformation of inhomogeneous swelling of gels using the improved complex variable element-free Galerkin method. Comput Methods Appl Mech Eng 274:84–102

    Article  MathSciNet  MATH  Google Scholar 

  • Li DM, Bai FN, Cheng YM, Liew KM (2012) A novel complex variable element-free Galerkin method for two-dimensional large deformation problems. Comput Methods Appl Mech Eng 233–236:1–10

    MathSciNet  MATH  Google Scholar 

  • Li DM, Liew KM, Cheng YM (2014) An improved complex variable element-free Galerkin method for two-dimensional large deformation elastoplasticity problems. Comput Methods Appl Mech Eng 269:72–86

    Article  MathSciNet  MATH  Google Scholar 

  • Li DM, Liew KM, Cheng YM (2014) Analyzing elastoplastic large deformation problems with the complex variable element-free Galerkin method. Comput Mech 53:1149–1162

    Article  MathSciNet  Google Scholar 

  • Liu T, Liu G, Wang Q (2005) An element-free galerkin-finite element coupling method for elasto-plastic contact problems. J Tribol 128:1–9

    Article  Google Scholar 

  • Mesmoudi S, Timesli A, Braikat B, Lahmam H, Zahrouni H (2017) A 2D mechanical-thermal coupled model to simulate material mixing observed in friction stir welding process. Eng Comput 33:885–895

    Article  Google Scholar 

  • Nguyen VP, Rabczuk T, Bordas S, Duflot M (2008) AMeshless methods: a review and computer implementation aspects. Eng Comput 79:763–813

    MATH  Google Scholar 

  • Peng M, Li DM, Cheng Y (2011) The complex variable element-free Galerkin (CVEFG) method for elasto-plasticity problems. Eng Struct 33:127–135

    Article  Google Scholar 

  • Rossi R, Alves K (2005) An h-adaptive modified element-free Galerkin method. Eur J Mech - A/Solids 24:782–799

    Article  MathSciNet  MATH  Google Scholar 

  • Rabczuk T, Areias P, Belytschko T (2007) A meshfree thin shell method for nonlinear dynamic fracture. Int J Numer Methods Eng 72:524–548

    Article  MATH  Google Scholar 

  • Rao BN, Rahman S (2004) An enriched meshless method for non-linear fracture mechanics. Int J Numer Methods Eng 59:197–223

    Article  MATH  Google Scholar 

  • Timesli A (2020) An efficient approach for prediction of the nonlocal critical buckling load of double-walled carbon nanotubes using the nonlocal Donnell shell theory. SN Appl Sci 2:407

    Article  Google Scholar 

  • Timesli A (2020) Buckling analysis of double walled carbon nanotubes embedded in Kerr elastic medium under axial compression using the nonlocal Donnell shell theory. Adv Nano Res 9:69–82

    Google Scholar 

  • Timesli A, Zahrouni H, Braikat B, Moufki A, Lahmam H (2011) Numerical model based on meshless method to simulate FSW. Comput Methods Appl Sci: Particle-Based Methods II - Fundam Appl 25:651–662

    Google Scholar 

  • Timesli A, Braikat B, Lahmam H, Zahrouni H (2013) An implicit algorithm based on continuous moving least square to simulate material mixing in friction stir welding process. Model Simul Eng 2013:1–14

    Article  Google Scholar 

  • Timesli A, Braikat B, Lahmam H, Zahrouni H (2015) A new algorithm based on moving least square method to simulate material mixing in friction stir welding. Eng Anal Bound Elem 50:372–380

    Article  Google Scholar 

  • Xu Y, Saigal S (1998) Element free galerkin study of steady quasi-static crack growth in plane strain tension in elastic-plastic materials. Comput Mech 22:255–265

    Article  MATH  Google Scholar 

  • Xu Y, Saigal S (1999) An element-free galerkin analysis of steady dynamic growth of a mode i crack in elastic-plastic materials. Int J Solids Struct 36:1045–1079

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelaziz Timesli.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Timesli, A. Optimized Radius of Influence Domain in Meshless Approach for Modeling of Large Deformation Problems. Iran J Sci Technol Trans Mech Eng 46, 541–551 (2022). https://doi.org/10.1007/s40997-021-00427-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-021-00427-3

Keywords

Navigation