Skip to main content
Log in

DNS of Microfiber-Induced Drag Reduction Using a Two-Way Coupled Lagrangian Moment Approximation Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

A two-way coupled Lagrangian moment approximation method for the simulation of Brownian fiber suspensions in turbulence is proposed. The flow equations are solved in an Eulerian manner. The influence of fibers on the fluid flow is taken into account by a non-Newtonian stress tensor. The fiber conformation and stresses are computed in a Lagrangian manner using the moment approximation method. The new method is used to simulate turbulent drag reduction in a plane channel. The results are compared with those of a direct Monte–Carlo solution of the Fokker–Planck equation, and a very good agreement is established. In comparison with the Newtonian flow case, the logarithmic region of the mean velocity profile shows a shift toward higher velocities, and velocity fluctuations in the streamwise direction are amplified, whereas the spanwise and wall-normal velocity fluctuations are attenuated, and the viscous sublayer is thickened. Small discrepancies between the results of the presented method and the reference data are conjectured to be mostly a consequence of the errors associated with the closure modeling, as also observed in previous Eulerian simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Advani SG, Tucker CL (1987) The use of tensors to describe and predict fiber orientation in short fiber composites. J Rheol 31:751–784

    Article  Google Scholar 

  • Batchelor GK (1959) Small-scale variation of convected quantities like temperature in turbulent fluid. 1. General discussion and the case of small conductivity. J Fluid Mech 5:113–133

    Article  MathSciNet  MATH  Google Scholar 

  • Batchelor GK (1970) The stress system in a suspension of force-free particles. J Fluid Mech 41:545–570

    Article  MATH  Google Scholar 

  • Benzi R, Ching ESC, De Angelis E, Procaccia I (2008) Comparison of theory and direct numerical simulations of drag reduction by rodlike polymers in turbulent channel flows. Phys Rev E 77:046309

    Article  Google Scholar 

  • Brenner H (1970) Rheology of two-phase systems. Annu Rev Fluid Mech 2:137–176

    Article  Google Scholar 

  • Brenner H (1972) Suspension rheology in the presence of rotary Brownian motion and external couples: elongational flow of dilute suspensions. Chem Eng Sci 27:1069–1107

    Article  Google Scholar 

  • Brenner H (1974) Rheology of a dilute suspension of axisymmetric Brownian particles. Int J Multiph Flow 1:195–341

    Article  MATH  Google Scholar 

  • Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comp 22:745–762

    Article  MathSciNet  MATH  Google Scholar 

  • Chung D, Kwon T (2002) Invariant-based optimal fitting closure approximation for the numerical prediction of flow-induced fiber orientation. J Rheol 46:169–194

    Article  Google Scholar 

  • Cintra JS, Tucker CL (1995) Orthotropic closure approximations for flow-induced fiber orientation. J Rheol 39:1095–1122

    Article  Google Scholar 

  • den Toonder JMJ, Hulsen MA, Kuiken GDC, Nieuwstadt FTM (1997) Drag reduction by polymer additives in a turbulent pipe flow: numerical and laboratory experiments. J Fluid Mech 337:193–231

    Article  Google Scholar 

  • Doi M, Edwards SF (1986) The theory of polymer dynamics. Clarendon, Oxford

    Google Scholar 

  • Gillissen JJJ, Boersma BJ, Mortensen PH, Andersson HI (2007) On the performance of the moment approximation for the numerical computation of fiber stress in turbulent channel flow. Phys Fluids 19:035102

    Article  MATH  Google Scholar 

  • Gillissen JJJ, Boersma BJ, Mortensen PH, Andersson HI (2007) The stress generated by non-Brownian fibers in turbulent channel flow simulations. Phys Fluids 19:115107

    Article  MATH  Google Scholar 

  • Hand GL (1962) A theory of anisotropic fluids. J Fluid Mech 13:33–46

    Article  MathSciNet  MATH  Google Scholar 

  • Harlow FH, Welch JE (1965) Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface. Phys Fluids 8:2182

    Article  MathSciNet  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1972) The effect of Brownian motion on the rheological properties of a suspension of non-spherical particles. J Fluid Mech 52:683–712

    Article  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1973) Time-dependent shear flows of a suspension of particles with weak Brownian rotations. J Fluid Mech 57:753–767

    Article  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1975) Constitutive equations in suspension mechanics. Part 1: general formulation. J Fluid Mech 71:481–495

    Article  MATH  Google Scholar 

  • Hinch EJ, Leal LG (1976) Constitutive equations in suspension mechanics. Part 2: approximate forms for a suspension of rigid particles affected by Brownian rotations. J Fluid Mech 76:187–208

    Article  MATH  Google Scholar 

  • Hokpunna A, Manhart M (2010) Compact fourth-order finite volume method for numerical solutions of Navier–Stokes equations on staggered grids. J Comput Phys 229:7545–7570

    Article  MathSciNet  MATH  Google Scholar 

  • Jeffery G (1922) The motion of ellipsoidal particles immersed in a viscous fluid. Proc R Soc Lond A 102:161–179

    Article  MATH  Google Scholar 

  • Leal LG, Hinch EJ (1972) The rheology of a suspension of nearly spherical particles subject to Brownian rotations. J Fluid Mech 55:745–765

    Article  MATH  Google Scholar 

  • Lipscomb GG, Denn MM, Hur DU, Boger DV (1988) The flow of fiber suspensions in complex geometries. J Non-Newton Fluid Mech 26:297–325

    Article  Google Scholar 

  • Manhart M (2003) Rheology of suspensions of rigid-rod like particles in turbulent channel flow. J Non-Newton Fluid Mech 112:269–293

    Article  MATH  Google Scholar 

  • Manhart M (2004) Visco-elastic behaviour of suspensions of rigid-rod like particles in turbulent channel flow. Eur J Mech B-Fluids 23:461–474

    Article  MATH  Google Scholar 

  • Manhart M (2004) A zonal grid algorithm for DNS of turbulent boundary layers. Comput Fluids 33:435–461

    Article  MATH  Google Scholar 

  • Meyer DW, Jenny P (2004) Conservative velocity interpolation for PDF methods. Proc Appl Math Mech 4:466–467

    Article  MATH  Google Scholar 

  • Moin P (2001) Fundamentals of engineering numerical analysis. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Montgomery-Smith S, Jack DA, Smith DE (2010) A systematic approach to obtaining numerical solutions of Jeffery’s type equations using spherical harmonics. Compos Part A 41:827–835

    Article  Google Scholar 

  • Moosaie A (2013) Effect of rotary inertia on the orientational behavior of dilute Brownian and non-Brownian fiber suspensions. J Disper Sci Technol 34:870–879

    Article  Google Scholar 

  • Moosaie A (2016) DNS of turbulent drag reduction in a pressure-driven rod-roughened channel flow by microfiber additives. J Non-Newton Fluid Mech 232:1–10

    Article  MathSciNet  Google Scholar 

  • Moosaie A, Manhart M (2011) An algebraic closure for the DNS of fiber-induced turbulent drag reduction in a channel flow. J Non-Newton Fluid Mech 166:1190–1197

    Article  MATH  Google Scholar 

  • Moosaie A, Manhart M (2013) Direct Monte Carlo simulation of turbulent drag reduction by rigid fibers in a channel flow. Acta Mech 224:2385–2413

    Article  MathSciNet  MATH  Google Scholar 

  • Moosaie A, Manhart M (2013) A direct numerical simulation method for flow of Brownian fiber suspensions in complex geometries. J Disper Sci Technol 34:427–440

    Article  Google Scholar 

  • Moosaie A, Manhart M (2015) On the structure of vorticity and near-wall partial enstrophy in fibrous drag-reduced turbulent channel flow. J Non-Newton Fluid Mech 223:249–256

    Article  MathSciNet  Google Scholar 

  • Moosaie A, Manhart M (2016) On the pressure-strain correlation in fibrous drag-reduced turbulent channel flow. Phys Fluids 28:025101

    Article  Google Scholar 

  • Moosaie A, Le Duc A, Manhart M (2010) Numerical simulation of flow-induced fiber orientation using normalization of second moment. J Non-Newton Fluid Mech 165:551–554

    Article  MATH  Google Scholar 

  • Moosaie A, Le Duc A, Manhart M (2010) A comparative study on the performance of various moment closures in flows of fiber suspensions. Proc Appl Math Mech 10:447–448

    Article  Google Scholar 

  • Moosaie A, Le Duc A, Manhart M (2011) A priori analysis of a closure model using the reconstruction of the orientation distribution function in flow of fiber suspensions. Comput Mech 48:451–459

    Article  MATH  Google Scholar 

  • Moosaie A, Shekouhi N, Nouri NM, Manhart M (2015) An algebraic closure model for the DNS of turbulent drag reduction by Brownian microfiber additives in a channel flow. J Non-Newton Fluid Mech 226:60–66

    Article  MathSciNet  Google Scholar 

  • Niazi-Ardekani M, Costa P, Breugem W-P, Picano F, Brandt L (2017) Drag reduction in turbulent channel flow laden with finite-size oblate spheroids. J Fluid Mech 816:43–70

    Article  MathSciNet  MATH  Google Scholar 

  • Orlandi P (1995) A tentative approach to the direct simulation of drag reduction by polymers. J Non-Newton Fluid Mech 60:277–301

    Article  Google Scholar 

  • Öttinger HC (2009) On the stupendous beauty of closure. J Rheol 53:1285–1304

    Article  Google Scholar 

  • Paschkewitz JS, Dubief Y, Dimitropoulos CD, Shaqfeh ESG, Moin P (2004) Numerical simulation of turbulent drag reduction using rigid fibres. J Fluid Mech 518:281–317

    Article  MATH  Google Scholar 

  • Paschkewitz JS, Dubief Y, Shaqfeh ESG (2005) The dynamic mechanism for turbulent drag reduction using rigid fibers based on Lagrangian conditional statistics. Phys Fluids 17:063102

    Article  MATH  Google Scholar 

  • Paschkewitz JS, Dimitropoulos CD, Hou YX, Somandepalli VSR, Mungal MG, Shaqfeh ESG, Moin P (2005) An experimental and numerical investigation of drag reduction in a turbulent boundary layer using a rigid rodlike polymer. Phys Fluids 17:085101

    Article  MATH  Google Scholar 

  • Shaqfeh ESG, Fredrickson GH (1990) The hydrodynamic stress in a suspension of rods. Phys Fluids A 2:7–24

    Article  MathSciNet  MATH  Google Scholar 

  • Stewart WE, Sorensen JP (1972) Hydrodynamic interaction effects in rigid dumbbell suspensions. II. Computations for steady shear flow. Trans Soc Rheol 16:1–13

    Article  Google Scholar 

  • Temam R (1969) Sur l’approximation de la solution des équations de Navier–Stokes par la méthode des pas fractionnaires (ii). Arch Ration Mech Anal 33:377–385

    Article  MATH  Google Scholar 

  • Wang Z, Zhao L (2020) The particle stress in dilute suspensions of inertialess spheroids in turbulent channel flow. Phys Fluids 32:013302

    Article  Google Scholar 

  • Williamson JH (1980) Low-storage Runge–Kutta schemes. J Comput Phys 35:48–56

    Article  MathSciNet  MATH  Google Scholar 

  • Zharovsky E, Moosaie A, Le Duc A, Manhart M, Simeon B (2012) On the numerical solution of a convection-diffusion equation for particle orientation dynamics on geodesic grids. Appl Numer Math 62:1554–1566

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Moosaie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosaie, A. DNS of Microfiber-Induced Drag Reduction Using a Two-Way Coupled Lagrangian Moment Approximation Method. Iran J Sci Technol Trans Mech Eng 45, 245–254 (2021). https://doi.org/10.1007/s40997-020-00387-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00387-0

Keywords

Navigation