Skip to main content
Log in

Effect of Thermal Radiation, Temperature Jump and Inclined Magnetic Field on the Peristaltic Transport of Blood Flow in an Asymmetric Channel with Variable Viscosity and Heat Absorption/Generation

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

This article is aimed at describing the effect of thermal radiation, heat source/sink and thermal slip on the peristaltic flow of blood in an asymmetric channel. Mathematical analysis has been carried out in the presence of aligned magnetic field. The physical problem is first modeled, and then, the solutions of coupled nonlinear differential equations are obtained by means of regular perturbation method. Assumptions of long wavelength and low Reynolds number approximations were adopted. Physical characteristics of various embedded parameters such as Hartmann number, radiation parameter, aligned magnetic field parameter and heat source/sink parameter are illustrated and discussed graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

\(a_1, b_1\) :

Amplitudes of the wavy walls

ab :

Amplitude ratios

\(d_1+d_2\) :

Width of channel

\(\lambda\) :

Wavelength

c :

Wave speed

\(t^{\prime }\) :

Time

u :

Axial velocity

d :

Mean half width of the channel

\(B_0\) :

Intensity of external magnetic field

\(\rho\) :

Constant density

g :

Acceleration due to gravity

\(\Theta\) :

Aligned magnetic field

K :

Thermal conductivity

\(\sigma\) :

Electrical conductivity of the fluid

\(c_p\) :

Specific heat

M :

Hartmann number

p :

Pressure

\(u^{\prime },v^{\prime }\) :

Velocity components in wave frame

\(\gamma\) :

Thermal slip parameter

\(k^{\prime }\) :

Mean absorption coefficient

\(\theta\) :

Temperature distribution

\(\alpha\) :

Reynolds model viscosity parameter

\(Q^{\prime }\) :

Heat generation coefficient

\(\mu _0\) :

Constant viscosity

\(q_r\) :

Radiative heat flux

R :

Thermal radiation parameter

\(\mu ^{\prime }(Y^{\prime })\) :

Viscosity function

\(\alpha ^{\prime }\) :

Coefficient of thermal expansion

Re :

Reynolds number

\(p^{\prime }\) :

Pressure in wave frame

\(\delta\) :

Wave number

Pr :

Prandtl number

Gr :

Grashof number

\(\beta\) :

Heat source/sink parameter

Q :

Volume flow rate

\(\sigma ^{\prime }\) :

Stefan–Boltzmann constant

References

  • Abbasi FM, Hayat T, Alsaedi A, Ahmed B (2014) Soret and Dufour effects on peristaltic transport of MHD fluid with variable viscosity. Appl Math Inf Sci 8(1):211–219

    Article  Google Scholar 

  • Abd-Alla AM, Abo-Dahab SM (2015) Effect of an endoscope and rotation on the peristaltic flow involving a Jeffrey fluid with magnetic field. J Braz Soc Mech Sci Eng 37:1277–1289

    Article  Google Scholar 

  • Abd-Alla AM, Abo-Dahab SM, El-Shahrany HD (2014) Effects of an endoscope and rotation on peristaltic flow in a tube with long wavelength. J Comput Theor Nanosci 11:1055–1065

    Article  Google Scholar 

  • Abdul GS, Ramachandra PV, Keshava RE, Anwar BO (2015) Thermal radiation and heat generation/absorption effects on viscoelastic double-diffusive convection from an isothermal sphere in porous media. Ain Shams Eng J 6:1009–1030

    Article  Google Scholar 

  • Akbar NS (2015) Influence of magnetic field on peristaltic flow of a Casson fluid in an asymmetric channel: application in crude oil refinement. J Magn Magn Mater 378:463–468

    Article  Google Scholar 

  • Ali N, Hussain Q, Hayat T, Asghar S (2007) Slip effects on the peristaltic transport of MHD fluid with variable viscosity. Phys Lett A 372(9):1477–1489

    Article  MathSciNet  Google Scholar 

  • Animasaun IL (2015) Effects of thermophoresis, variable viscosity and thermal conductivity on free convective heat and mass transfer of non-darcian MHD dissipative Casson fluid flow with suction and nth order of chemical reaction. J Niger Math Soc 34:11–31

    Article  MathSciNet  Google Scholar 

  • Arpaci VS, Selamet A, Kao SH (2000) Introduction to heat transfer. Prentice-Hall, New York

    Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2016a) Simultaneous effects of coagulation and variable magnetic field on peristaltically induced motion of Jeffrey nanofluid containing gyrotactic microorganism. Microvasc Res 110:32–42

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2016b) Study of variable magnetic field on the peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct having compliant walls. J Mol Liq 222:101–108

    Article  Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2016c) Study of heat transfer with nonlinear thermal radiation on sinusoidal motion of magnetic solid particles in a dusty fluid. J Theor Appl Mech 46(3):75–94

    Article  MathSciNet  Google Scholar 

  • Bhatti MM, Zeeshan A, Ellahi R (2016d) Endoscope analysis on peristaltic blood flow of Sisko fluid with Titanium magneto-nanoparticles. Comput Biol Med 78:29–41

    Article  Google Scholar 

  • Bhatti MM, Abbas MA, Rashidi MM (2018) Entropy generation in blood flow with heat and mass transfer for the Ellis fluid model. Heat Transf Res 49:747–760

    Article  Google Scholar 

  • Chinyoka T, Makinde OD (2012) Unsteady hydromagnetic flow of a reactive variable viscosity third-grade fluid in a channel with convective cooling. Int J Numer Methods Fluids 69:353–365

    Article  MathSciNet  Google Scholar 

  • Cramer KR, Pai SI (1973) Magnetofluid dynamics for engineers and applied physicists. McGraw-Hill, New York

    Google Scholar 

  • Dar AA, Elangovan K (2016) Thermal diffusion, radiation and inclined magnetic field effects on oscillatory flow in an asymmetric channel in presence of heat source and chemical reaction. J Niger Math Soc 35:488–509

    MathSciNet  Google Scholar 

  • Dar AA, Elangovan K (2017a) Impact of an inclined magnetic field, heat generation/absorption and radiation on the peristaltic flow of a Micropolar fluid through a porous non-uniform channel with slip velocity. New Trends Math Sci 5:227–244

    Article  Google Scholar 

  • Dar AA, Elangovan K (2017b) Influence of an inclined magnetic field on Heat and Mass transfer of the peristaltic flow of a couple stress fluid in an inclined channel. World J Eng 14(1):7–18

    Article  Google Scholar 

  • El Hakeem A, El Naby A, El Misery AEM, El Shamy II (2003) Hydromagnetic flow of fluid with variable viscosity in a uniform tube with peristalsis. J Phys A Math Gen 36(31):8535–8547

    Article  MathSciNet  Google Scholar 

  • El Hakeem A, El Naby A, El Misery AM, El Shamy II (2004) Effects of an endoscope and fluid with variable viscosity on peristaltic motion. Appl Math Comput 158:497–511

    MathSciNet  MATH  Google Scholar 

  • El Misery AM, El Hakeem A, El Naby A, El Nagar AH (2003) Effects of a fluid with variable viscosity and an endoscope on peristaltic motion. J Phys Soc Jpn 72:89–93

    Article  Google Scholar 

  • Ellahi R, Bhatti MM, Vafai K (2014) Effects of heat and mass transfer on peristaltic flow in a non-uniform rectangular duct. Int J Heat Mass Transf 71:706–719

    Article  Google Scholar 

  • Farooq M, Rahim MT, Islam S, Siddiqui AM (2013) Steady Poiseuille flow and heat transfer of couple stress fluids between two parallel inclined plates with variable viscosity. J Assoc Arab Univ Basic Appl Sci 14:9–18

    Google Scholar 

  • Fung YC, Yih CS (1968) Peristaltic transport. J Appl Mech 35:669–675

    Article  Google Scholar 

  • Haroun MH (2007) Non linear peristaltic transport flow of a fourth grade fluid in an inclined asymmetric channel. Comput Mater Sci 39:324–333

    Article  Google Scholar 

  • Hayat T, Ali N (2008) Effect of variable viscosity on the peristaltic transport of a Newtonian fluid in an asymmetric channel. Appl Math Model 32(5):761–774

    Article  MathSciNet  Google Scholar 

  • Kothandapani M, Srinivas S (2008) Non-linear peristaltic transport of a Newtonian fluid in an inclined asymmetric channel through a porous medium. Phys Lett A 372:1265–1276

    Article  Google Scholar 

  • Maiti S, Misra JC (2011) Peristaltic flow of a fluid in a porous channel: a study having relevance to flow of bile within ducts in pathological state. Int J Eng Sci 49(9):950–966

    Article  MathSciNet  Google Scholar 

  • Makinde OD, Onyejekwe OO (2011) A numerical study of MHD generalized Couette flow and heat transfer with variable viscosity and electrical conductivity. J Magn Magn Mater 323:2757–2763

    Article  Google Scholar 

  • Mekheimer KS (2004) Peristaltic flow of blood under effect of a magnetic field in a non-uniform channels. Appl Math Comput 153:763–777

    MathSciNet  MATH  Google Scholar 

  • Mekheimer KS, Abdel-Wahab AN (2012) Net annulus flow of a compressible viscous liquid with peristalsis. J Aerosp Eng 25:660–669

    Article  Google Scholar 

  • Nadeem S (2011) Peristaltic flow of a Maxwell model through porous boundaries in a porous medium. Transp Porous Media 86:895–909

    Article  MathSciNet  Google Scholar 

  • Nadeem S, Akbar NS (2010) Influence of radially varying MHD on the peristaltic flow in an annulus with heat and mass transfer. J Taiwan Inst Chem Eng 41:286–294

    Article  Google Scholar 

  • Satya Narayana PV, Venkateswarlu B, Devika B (2016) Chemical reaction and heat source effects on MHD oscillatory flow in an irregular channel. Ain Shams Eng J 7:1079–1088

    Article  Google Scholar 

  • Shapiro AH, Jaffrin MY, Weinberg SL (1969) Peristaltic pumping with long wavelength at low Reynolds number. J Fluid Mech 37:799–825

    Article  Google Scholar 

  • Sharma S, Singh U, Katiyar VK (2015) Magnetic field effect on flow parameters of blood along with magnetic particles in a cylindrical tube. J Magn Magn Mater 377:395–401

    Article  Google Scholar 

  • Shit GC, Majee S (2015) Pulsatile flow of blood and heat transfer with variable viscosity under magnetic and vibration environment. J Magn Magn Mater 388:106–115

    Article  Google Scholar 

  • Sinha A, Shit GC (2015) Electromagnetohydrodynamic flow of blood and heat transfer in a capillary with thermal radiation. J Magn Magn Mater 378:143–151

    Article  Google Scholar 

  • Srivastava LM, Srivastava VP, Sinha SN (1983) Peristaltic transport of a physiological fluid. Part-I. Flow in non-uniform geometry. Biorheology 20:153–166

    Article  Google Scholar 

  • Szasz A (2007) Hyperthermia, a modality in the wings. J Cancer Res Ther 3:56–66

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajaz Ahmad Dar.

Appendix

Appendix

$$\begin{aligned}&C_1=\frac{\beta \left( \gamma h_1-\gamma h_2-h_1 h_2\right) }{2 \left( 1+R\right)}.\\&C_2=-\frac{-\beta h_1-\beta h_2}{2 \left( 1+R\right) }.\\&C_3=\frac{e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( A_4+A_3+\sqrt{A_2} Gr \left( h_1-h_2\right) {}^2 \left( A_6\right) \right) }{A_5}.\\&C_4=\frac{A_4-A_3+\sqrt{A_2} Gr \left( h_1-h_2\right) {}^2 \left( A_7\right) }{-A_5}.\\&C_5=\frac{A_8-A_9+A_{10}+A_{11}-\sqrt{A_2} Gr \left( A_{12}+A_{13}\right) }{6 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) A_2^{3/2} \left( A_{14}\right) }.\\&C_6=\frac{A_{17}-A_{16}+A_{15}}{6 A_2 A_{14}}.\\&C_7=\frac{-2 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) {}^2 A_2 \left( 4 C_3-e^{\sqrt{A_2} \left( h_1+h_2\right) } C_4\right) -A_{20}+A_{21}+A_{33}+A_{30}}{8\left( -e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) A_2^{3/2} A_{18}}.\\&C_8=\frac{e^{-\sqrt{A_2} \left( h_1+h_2\right) } A_{27}}{8 \left( -e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) A_2^{3/2} A_{18}}.\\&C_9=\frac{e^{-\sqrt{A_2} \left( h_1+h_2\right) } \left( 8 \left( e^{\sqrt{A_2} \left( 3 h_1+h_2\right) }-e^{\sqrt{A_2} \left( h_1+3 h_2\right) }\right) A_1 Gr \left( h_1-h_2\right) +A_{44}\right) }{4 \left( -e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) A_2^{5/2} A_{18}}.\\&C_{10}=\frac{e^{-\frac{3}{2} \sqrt{A_2} \left( h_1+h_2\right) } \left( A_{48}+4 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }+e^{\sqrt{A_2} \left( h_1+2h_2\right) }\right) A_2^{5/2} F_1+A_{50}+A_{46}+A_{47}\right) }{A_{45}}.\\&A_1=\frac{\beta }{1+R}, \,\,A_2=M^2\cos ^2\Theta .\\&A_3=3 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) Gr\left( h_1-h_2\right) \left( -2 C_2+A_1 \left( h_1+h_2\right) \right) .\\&A_4=-6 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) A_2^{3/2} \left( F_0+h_1-h_2\right) .\\&A_5=6 \left( -e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) \sqrt{A_2} \left( e^{\sqrt{A_2} h_1} \left( -2+\sqrt{A_2} \left( h_1-h_2\right) \right) +e^{\sqrt{A_2} h_2} \left( 2+\sqrt{A_2} \left( h_1-h_2\right) \right) \right) .\\&A_6=e^{\sqrt{A_2} h_2} \left( 3 C_2-A_1 \left( 2 h_1+h_2\right) \right) e^{\sqrt{A_2} h_1} \left( 3 C_2-A_1 \left( h_1+2 h_2\right) \right) .\\&A_7=e^{\sqrt{A_2} h_2} \left( -3 C_2+A_1 \left( h_1+2 h_2\right) \right)+e^{\sqrt{A_2} h_1} \left( -3 C_2+A_1 \left( 2 h_1+h_2\right) \right) .\\&A_8=-6 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) {}^2 A_2^{3/2} \left( h_1+h_2\right) .\\&A_9=3 \left( e^{2 \sqrt{A_2} h_1}-e^{2 \sqrt{A_2} h_2}\right) A_2^2 F_0 \left( h_1+h_2\right) .\\&A_{10}=\left( e^{2 \sqrt{A_2} h_1}-e^{2 \sqrt{A_2} h_2}\right) A_2 Gr h_1 h_2 \left( -h_1+h_2\right) \left( -3 C_2+A_1 \left( h_1+h_2\right) \right) .\\&A_{11}=3 \left( e^{2 \sqrt{A_2} h_1}-e^{2 \sqrt{A_2} h_2}\right) Gr \left( h_1-h_2\right)\left( -2 C_2+A_1 \left( h_1+h_2\right) \right) .\\ \end{aligned}$$
$$\begin{aligned} &A_{12}=\left( e^{2 \sqrt{A_2} h_1}+e^{2 \sqrt{A_2} h_2}\right) \left( h_1^2-4 h_1 h_2+h_2^2\right)\left( -3 C_2+A_1 \left( h_1+h_2\right) \right) .\\&A_{13}=2 e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( -3 C_2 \left( h_1^2+h_2^2\right) +2 A_1 \left( h_1^3+h_2^3\right) \right) .\\&A_{14}=e^{\sqrt{A_2} h_1} \left( -2+\sqrt{A_2} \left( h_1-h_2\right) \right) +e^{\sqrt{A_2} h_2} \left( 2+\sqrt{A_2} \left( h_1-h_2\right) \right) .\\&A_{15}=\left( e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) \sqrt{A_2} Gr \left( h_1-h_2\right) \left( -3 C_2 \left( h_1+h_2\right) +A_1 \left( h_1^2+h_1h_2+h_2^2\right) \right) .\\&A_{16}=3 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) Gr \left( -2 C_2 \left( h_1+h_2\right) +A_1 \left( h_1^2+h_2^2\right) \right) .\\&A_{17}=12 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) A_2+6 \left( e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) A_2^{3/2} F_0.\\&A_{18}=e^{\sqrt{A_2} h_1} \left( -2+\sqrt{A_2} \left( h_1-h_2\right) \right) +e^{\sqrt{A_2} h_2} \left( 2+\sqrt{A_2} \left( h_1-h_2\right) \right) .\\&A_{19}=-2 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) {}^2 A_2 \left( C_3-4 e^{\sqrt{A_2} \left( h_1+h_2\right) } C_4\right) .\\&A_{20}=16 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }-e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right)A_1 Gr \left( h_1-h_2\right) .\\&A_{21}=8 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }+e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right)A_1 \sqrt{A_2} Gr \left( h_1-h_2\right) {}^2.\\&A_{22}=-5 \left( e^{\sqrt{A_2} \left( 3 h_1+h_2\right) }-e^{\sqrt{A_2} \left( h_1+3 h_2\right) }\right)C_4 \left( h_1-h_2\right) .\\&A_{23}=4 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) C_3 \left( -e^{\sqrt{A_2} h_2} h_1+e^{\sqrt{A_2} h_1} h_2\right) .\\&A_{24}=\left( h_1-h_2\right) \left( 4 e^{\sqrt{A_2} h_1}-4 e^{\sqrt{A_2} h_2}+e^{2 \sqrt{A_2} h_1} C_4 h_1^2-e^{2 \sqrt{A_2} h_2} C_4 h_2^2+C_3\left( h_1^2-h_2^2\right) \right) .\\&A_{25}=2 e^{\sqrt{A_2} \left( h_1+h_2\right) } A_2^{5/2} \left( 4 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) F_1+A_{24}\right) .\\&A_{26}=C_4 \left( \left( h_1+h_2\right) \left( e^{2 \sqrt{A_2} h_1} h_1+e^{2 \sqrt{A_2} h_2} h_2\right) -2 e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( h_1^2+h_2^2\right) \right) .\\&A_{27}=A_{19}-A_{20}+A_{21}+A_2^{3/2} \left( A_{22}-A_{23}\right) +A_{25}-2 e^{\sqrt{A_2} \left( h_1+h_2\right) } A_2^2 \left( C_3 \left( h_1-h_2\right) {}^2+A_{26}\right) .\\&A_{28}=-4 e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }+4 e^{\sqrt{A_2} \left( h_1+2 h_2\right) }+e^{2 \sqrt{A_2} \left( h_1+h_2\right) } C_4 \left( h_1^2-h_2^2\right) \\&A_{29}=\left( h_1-h_2\right) \left( A_{28}+C_3 \left( e^{2 \sqrt{A_2} h_2} h_1^2-e^{2 \sqrt{A_2} h_1} h_2^2\right) \right) .\\&A_{30}=2 A_2^{5/2} \left( -4 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right)}-e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right) F_1+A_{29}\right) .\\&A_{31}=C_3 \left( \left( h_1+h_2\right) \left( e^{2 \sqrt{A_2} h_2} h_1+e^{2 \sqrt{A_2} h_1} h_2\right) -2 e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( h_1^2+h_2^2\right) \right) .\\&A_{32}=5 \left( e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) C_3 \left( h_1-h_2\right)-4 C_4 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) } h_1-e^{\sqrt{A_2}\left( h_1+2 h_2\right) } h_2\right) .\\&A_{33}=\left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) A_2^{3/2} \left( A_{32}\right)+2 A_2^2 \left( e^{2 \sqrt{A_2} \left( h_1+h_2\right) } C_4 \left( h_1-h_2\right) {}^2+A_{31}\right) .\\&A_{34}=C_3 \left( e^{\sqrt{A_2} \left( h_1+2 h_2\right) } h_1-e^{\sqrt{A_2} \left( 2 h_1+h_2\right) } h_2\right)+C_4 \left( e^{\sqrt{A_2} \left( 3h_1+2 h_2\right) } h_1-e^{\sqrt{A_2} \left( 2 h_1+3 h_2\right) } h_2\right) .\\&A_{35}=2 A_2^{5/2} \left( h_1+h_2\right) \left( -2 e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) {}^2+\left( h_1-h_2\right) \left( A_{34}\right) \right) .\\&A_{36}=e^{\sqrt{A_2} \left( 2 h_1+3 h_2\right) } h_1^2-\left( e^{\sqrt{A_2} \left( 4 h_1+h_2\right) }+e^{\sqrt{A_2} \left( h_1+4 h_2\right) }\right) h_1 h_2+e^{\sqrt{A_2} \left( 3 h_1+2 h_2\right) } h_2^2.\\&A_{37}=C_3 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) } h_1^2-\left( e^{3 \sqrt{A_2} h_1}+e^{3 \sqrt{A_2} h_2}\right) h_1 h_2+e^{\sqrt{A_2} \left( h_1+2h_2\right) } h_2^2\right) -C_4 \left( A_{36}\right) .\\&A_{38}=8 e^{2 \sqrt{A_2} \left( h_1+h_2\right) } A_1 \sqrt{A_2} Gr \left( h_1^2+h_2^2+{\text{Cosh}}\left[ \sqrt{A_2} \left( h_1-h_2\right) \right] \left( h_1^2-4 h_1 h_2+h_2^2\right) \right) .\\&A_{39}=e^{\sqrt{A_2} \left( h_1+h_2\right) } \left( \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) C_4+4 A_1 Gr h_1 \left( h_1-h_2\right) h_2\right) .\\ \end{aligned}$$
$$\begin{aligned}&A_{40}=\left( e^{2 \sqrt{A_2} h_1}-e^{2 \sqrt{A_2} h_2}\right) A_2 \left( \left( -e^{\sqrt{A_2} h_1}+e^{\sqrt{A_2} h_2}\right) C_3+A_{39}\right) .\\&A_{41}=\left( e^{3 \sqrt{A_2} h_1}-2 e^{3 \sqrt{A_2} h_2}+e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right) h_1 +\left( -2 e^{3 \sqrt{A_2} h_1}+e^{3\sqrt{A_2} h_2}+e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }\right) h_2.\\&A_{42}=2 e^{\sqrt{A_2} \left( 4 h_1+h_2\right) } h_1-e^{\sqrt{A_2} \left( 3 h_1+2 h_2\right) } h_1-e^{\sqrt{A_2} \left( h_1+4 h_2\right) } \left( h_1-2h_2\right) .\\&A_{43}=A_2^{3/2} \left( C_4 \left( A_{42}-e^{\sqrt{A_2} \left( 4 h_1+h_2\right) } h_2-e^{\sqrt{A_2} \left( 2 h_1+3 h_2\right) } h_2\right) -C_3 \left( A_{41}\right) \right) .\\&A_{44}=2 \left( e^{\sqrt{A_2} \left( 3 h_1+h_2\right) }-e^{\sqrt{A_2} \left( h_1+3 h_2\right) }\right) A_2^3 F_1 \left( h_1+h_2\right) +A_{43}-A_{40}-A_{38}+2A_2^2 \left( A_{37}\right) -A_{35}.\\&A_{45}=8 A_2^2 \left( -2 \text {Sinh}\left[ \frac{1}{2} \sqrt{A_2} \left( h_1-h_2\right) \right] +{\text {Cosh}}\left[ \frac{1}{2} \sqrt{A_2} \left( h_1-h_2\right) \right] \sqrt{A_2} \left( h_1-h_2\right) \right) .\\&A_{46}=2 A_2^{3/2} \left( C_3 \left( e^{2 \sqrt{A_2} h_2} h_1-e^{2 \sqrt{A_2} h_1} h_2\right)+C_4 \left( e^{\sqrt{A_2} \left( 3 h_1+h_2\right) }h_1-e^{\sqrt{A_2} \left( h_1+3 h_2\right) } h_2\right) \right) .\\&A_{47}=2 e^{\sqrt{A_2} \left( h_1+h_2\right) } A_2^2 \left( 4 \left( e^{\sqrt{A_2} h_1}-e^{\sqrt{A_2} h_2}\right) +\left( C_3-e^{\sqrt{A_2} \left( h_1+h_2\right) }C_4\right) \left( h_1^2-h_2^2\right) \right) .\\&A_{48}=-\left( e^{2 \sqrt{A_2} h_1}-e^{2 \sqrt{A_2} h_2}\right) A_2 \left( C_3+e^{\sqrt{A_2} \left( h_1+h_2\right) } C_4\right) .\\&A_{49}=8 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }-e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right) A_1 Gr \left( h_1+h_2\right) .\\&A_{50}=A_{49}-4 \left( e^{\sqrt{A_2} \left( 2 h_1+h_2\right) }+e^{\sqrt{A_2} \left( h_1+2 h_2\right) }\right)A_1 \sqrt{A_2} Gr \left( h_1^2-h_2^2\right) . \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dar, A.A. Effect of Thermal Radiation, Temperature Jump and Inclined Magnetic Field on the Peristaltic Transport of Blood Flow in an Asymmetric Channel with Variable Viscosity and Heat Absorption/Generation. Iran J Sci Technol Trans Mech Eng 45, 487–501 (2021). https://doi.org/10.1007/s40997-020-00349-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00349-6

Keywords

Navigation