Skip to main content
Log in

Fully Resolved Numerical Simulation of Free Convection of Falling Spherical Particles in Sedimentation Transports Using Immersed Boundary Method

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this research, the direct numerical simulations are applied to study the sedimentation of spherical particles in an unsteady thermal condition in a viscous flow. The immersed boundary method is used to fully resolve the hydrodynamic interactions of solid–fluid phases, and a volume of fluid approach is employed to account the heat transfer both inside and outside the solid particles. The Boussinesq approximation is used to consider the density variation of the fluid. The behavior of particles is examined under different thermal conductivity ratios (\(k_{\mathrm{r}}\)) ranging between 0.1 to 10 and various Grashof numbers (Gr) up to 5000. The results indicate that for the Grashof and Galilean (Ga) numbers less than 5000 and 50, respectively, the threshold of \(k_{\mathrm{r}}\) to solve the energy equation inside the particles is \(k_{\mathrm{r}}=0.1,\) and for the thermal conductivity ratio higher than this value, the heating/cooling of the particles is fast enough to assume that the temperature over the solid particle changes uniformly. Furthermore, we investigate the well-known drafting–kissing–tumbling (DKT) phenomenon for a pair of spherical particles in an enclosed space at different \(k_{\mathrm{r}}\) and Gr numbers. It is observed that the DKT motion of two particles with varied temperature is proceeded with any values of \(k_{\mathrm{r}}\) and Grashof number; however, the natural convection delays this process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Ahuja AS (1975) Augmentation of heat transport in laminar flow of polystyrene suspensions. I. Experiments and results. J Appl Phys 46:3408–3416

    Article  Google Scholar 

  • Ardekani MN, Abouali O, Picano F, Brandt L (2018a) Heat transfer in laminar Couette flow laden with rigid spherical particles. J Fluid Mech 834:308–334

    Article  MathSciNet  Google Scholar 

  • Ardekani MN, Al Asmar L, Picano F, Brandt L (2018b) Numerical study of heat transfer in laminar and turbulent pipe flow with finite-size spherical particles. Int J Heat Fluid Flow 71:189–199

    Article  Google Scholar 

  • Ardekani MN, Costa P, Breugem WP, Brandt L (2016) Numerical study of the sedimentation of spheroidal particles. Int J Multiph Flow 87:16–34

    Article  MathSciNet  Google Scholar 

  • Bar-Ziv E, Zhao B, Mograbi E, Katoshevski D, Ziskind G (2002) Experimental validation of the Stokes law at nonisothermal conditions. Phys Fluids 14:2015–2018

    Article  Google Scholar 

  • Breugem W-P (2012) A second-order accurate immersed boundary method for fully resolved simulations of particle-laden flows. J Comput Phys 231:4469–4498

    Article  MathSciNet  Google Scholar 

  • Chouippe A, Krayer M, Uhlmann M, Dušek J, Kiselev A, Leisner T (2019) Heat and water vapor transfer in the wake of a falling ice sphere and its implication for secondary ice formation in clouds. New J Phys 21:043043

    Article  Google Scholar 

  • Clift R, Grace JR, Weber ME (2005) Bubbles, drops, and particles. Courier Corporation, Chelmsford

    Google Scholar 

  • Costa P, Boersma BJ, Westerweel J, Breugem W-P (2015) Collision model for fully resolved simulations of flows laden with finite-size particles. Phys Rev E 92:053012

    Article  MathSciNet  Google Scholar 

  • Dan C, Wachs A (2010) Direct numerical simulation of particulate flow with heat transfer. Int J Heat Fluid Flow 31:1050–1057

    Article  Google Scholar 

  • Eshghinejadfard A, Thévenin D (2016) Numerical simulation of heat transfer in particulate flows using a thermal immersed boundary lattice Boltzmann method. Int J Heat Fluid Flow 60:31–46

    Article  Google Scholar 

  • Feng J, Hu HH, Joseph DD (1994) Direct simulation of initial value problems for the motion of solid bodies in a Newtonian fluid part 1. Sedimentation. J Fluid Mech 261:95–134

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2008) Inclusion of heat transfer computations for particle laden flows. Phys Fluids 20:040604

    Article  Google Scholar 

  • Feng Z-G, Michaelides EE (2009) Heat transfer in particulate flows with direct numerical simulation (DNS). Int J Heat Mass Transf 52:777–786

    Article  Google Scholar 

  • Glowinski R, Pan T-W, Hesla TI, Joseph DD (1999) A distributed Lagrange multiplier/fictitious domain method for particulate flows. Int J Multiph Flow 25:755–794

    Article  MathSciNet  Google Scholar 

  • Hashemi Z, Abouali O, Ahmadi G (2017) Direct numerical simulation of particle-fluid interactions: a review. Iran J Sci Technol Trans Mech Eng 41:71–89

    Article  Google Scholar 

  • Hashemi Z, Abouali O, Kamali R (2013) Thermal three-dimensional lattice Boltzmann simulations of suspended solid particles in microchannels. Int J Heat Mass Transf 65:235–243

    Article  Google Scholar 

  • Hashemi Z, Abouali O, Kamali R (2014) Three dimensional thermal lattice Boltzmann simulation of heating/cooling spheres falling in a Newtonian liquid. Int J Therm Sci 82:23–33

    Article  Google Scholar 

  • van der Hoef MA, van Sint Annaland M, Deen N, Kuipers J (2008) Numerical simulation of dense gas–solid fluidized beds: a multiscale modeling strategy. Annu Rev Fluid Mech 40:47–70

    Article  MathSciNet  Google Scholar 

  • Jeffrey D (1982) Low-Reynolds-number flow between converging spheres. Mathematika 29:58–66

    Article  MathSciNet  Google Scholar 

  • Kim J, Choi H (2004) An immersed-boundary finite-volume method for simulation of heat transfer in complex geometries. KSME Int J 18:1026–1035

    Article  Google Scholar 

  • Liu X-D, Osher S, Chan T (1994) Weighted essentially non-oscillatory schemes. J Comput Phys 115:200–212

    Article  MathSciNet  Google Scholar 

  • Maxwell JC (1873) A treatise on electricity and magnetism, vol 1. Clarendon Press, Oxford

    MATH  Google Scholar 

  • Michaelides E, Crowe CT, Schwarzkopf JD (2016) Multiphase flow handbook. CRC Press, Boca Raton

    Book  Google Scholar 

  • Pacheco J, Pacheco-Vega A, Rodić T, Peck R (2005) Numerical simulations of heat transfer and fluid flow problems using an immersed-boundary finite-volume method on nonstaggered grids. Numer Heat Transf Part B Fundam 48:1–24

    Article  Google Scholar 

  • Peskin CS (1972) Flow patterns around heart valves: a numerical method. J Comput Phys 10:252–271

    Article  Google Scholar 

  • Roma AM, Peskin CS, Berger MJ (1999) An adaptive version of the immersed boundary method. J Comput Phys 153:509–534

    Article  MathSciNet  Google Scholar 

  • Shao X, Shi Y, Yu Z (2012) Combination of the fictitious domain method and the sharp interface method for direct numerical simulation of particulate flows with heat transfer. Int J Heat Mass Transf 55:6775–6785

    Article  Google Scholar 

  • Ström H, Sasic S (2013) A multiphase DNS approach for handling solid particles motion with heat transfer. Int J Multiph Flow 53:75–87

    Article  Google Scholar 

  • Wachs A (2011) Rising of 3D catalyst particles in a natural convection dominated flow by a parallel DNS method. Comput Chem Eng 35:2169–2185

    Article  Google Scholar 

  • Wesseling P (2009) Principles of computational fluid dynamics, vol 29. Springer, Berlin

    MATH  Google Scholar 

  • Xia J, Luo K, Fan J (2015) Simulating heat transfer from moving rigid bodies using high-order ghost-cell based immersed-boundary method. Int J Heat Mass Transf 89:856–865

    Article  Google Scholar 

  • Yang B, Chen S, Liu K (2017a) Direct numerical simulations of particle sedimentation with heat transfer using the lattice Boltzmann method. Int J Heat Mass Transf 104:419–437

    Article  Google Scholar 

  • Yang B, Chen S, Xiong Y, Zhang R, Zheng C (2017b) Size and thermal effects on sedimentation behaviors of two spheres. Int J Heat Mass Transf 114:198–206

    Article  Google Scholar 

  • Yin X, Koch DL (2007) Hindered settling velocity and microstructure in suspensions of solid spheres with moderate Reynolds numbers. Phys Fluids 19:093302

    Article  Google Scholar 

  • Yu Z, Phan-Thien N, Fan Y, Tanner RI (2002) Viscoelastic mobility problem of a system of particles. J Nonnewton Fluid Mech 104:87–124

    Article  Google Scholar 

  • Yu Z, Shao X, Wachs A (2006) A fictitious domain method for particulate flows with heat transfer. J Comput Phys 217:424–452

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omid Abouali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majlesara, M., Abouali, O. & Kamali, R. Fully Resolved Numerical Simulation of Free Convection of Falling Spherical Particles in Sedimentation Transports Using Immersed Boundary Method. Iran J Sci Technol Trans Mech Eng 45, 961–976 (2021). https://doi.org/10.1007/s40997-020-00348-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-020-00348-7

Keywords

Navigation