Skip to main content
Log in

Performance Analysis of a Conical Hydrodynamic Journal Bearing

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Many turbo-machines such as turbines and compressors generate axial and radial load during their operation. Conical hydrodynamic journal bearing is proposed to sustain radial load and adjust the effect of axial load on rotating elements. The present study has proposed the performance analysis for conical hydrodynamic journal bearing of semi-cone angles (γ = 5°, 10°, 20°, 30°) for a wide range of radial load (\(\bar{W}_{\text{r}} = 0.1 - 0.9\)) on rotating journal. Finite element method has been used to solve the modified Reynolds equation for investigating the flow of lubricant in the clearance space between journal and bearing. Performance characteristics such as load-carrying capacity, fluid film thickness, stiffness coefficients, damping coefficients and threshold speed for various configurations of conical hydrodynamic journal bearing have been presented and discussed. Results show that threshold speed (\(\bar{\omega }_{\text{th}}\)) of conical journal bearing is considerably reduced as the semi-cone angle increases to γ = 30° as compared to the base bearing of semi-cone angle γ = 5°.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Abbreviations

\(C_{ij}\) :

Damping coefficient (i, j = 1,2) (Ns/m)

\(c_{\text{r}}\) :

Radial clearance (µm)

\(c_{\text{r}} /R_{j}\) :

Clearance ratio

D :

Mean bearing diameter (mm)

d :

Mean journal diameter (mm)

e :

Journal eccentricity (mm) \((e^{2} = x^{2} + z^{2} )\)

\(e_{o} ;\varphi_{o}\) :

Journal eccentricity and attitude angle at initial equilibrium position

F :

Fluid film reaction \(\frac{\partial h}{\partial t} \ne 0\) (N)

F o :

Fluid film reaction \(\frac{\partial h}{\partial t} = 0\) (N)

F x, F z :

Fluid film reaction component in X and Z directions, \(\frac{\partial h}{\partial t} \ne 0\) (N)

F a, F r :

Fluid film reaction component in axial and radial directions, \(\frac{\partial h}{\partial t} \ne 0\) (N)

h :

Fluid film thickness (mm)

\(h_{\hbox{min} }\) :

Minimum fluid film thickness (mm)

L :

Bearing length (mm)

\(o_{1} , o_{2}\) :

Bearing and journal center

p :

Fluid film pressure (MPa)

\(p_{\hbox{max} }\) :

Maximum fluid film pressure (MPa)

\(p_{\text{s}}\) :

Supply pressure (MPa)

\(R_{\text{b}}\) :

Mean bearing radius (mm)

\(R_{j}\) :

Mean journal radius (mm)

\(R_{1} , R_{2}\) :

Minimum and maximum radius of conical journal (mm)

\(S_{ij}\) :

Fluid film stiffness coefficients (i, j = 1, 2) (N/m)

t :

Time (s)

\(t_{\text{s}}\) :

Supply temperature (°C)

W :

External load (N)

W a :

Axial load (N)

\(W_{\text{r}}\) :

Radial load (N)

X, Y, Z :

Cartesian coordinates (mm)

x, z :

Horizontal, vertical journal eccentricity (mm)

\(X_{j } ,Z_{j } ; \dot{X}_{j } ,\dot{Z}_{j }\) :

Journal center displacement and velocity components

\(X_{J } ,Z_{J}\) :

Coordinates of steady-state equilibrium journal center from geometric center of bearing (mm)

α :

Circumferential coordinate (ϕ) (rad)

β :

Axial coordinate (\(r\sin \gamma /R_{j}\))

γ :

Semi-cone angles

ε :

Journal eccentricity ratio (e/\(c_{\text{r}}\))

r, \(\theta ,\phi\) :

Spherical coordinates (mm, rad) (\(\theta = \gamma )\)

\(\varphi\) :

Attitude angle (rad)

λ :

Aspect ratio (L/D)

μ :

Lubricating fluid absolute or dynamic viscosity (Ns/m2)

ρ :

Mass density of lubricating fluid (kg/m3)

\(\mu_{\text{r}}\) :

Dynamic viscosity at reference inlet temperature and atmospheric pressure (Ns/m2)

ν :

Journal relative velocity (m/s)

\(\omega\) :

Journal angular velocity (rad/s)

Ω :

Speed parameter \(\omega \left( {\mu R_{j}^{2} /c_{\text{r}}^{2} p_{\text{s}} } \right)\)

\(\bar{C}_{11}\), \(\bar{C}_{22}\) :

Direct damping coefficients

\(\bar{C}_{12}\), \(\bar{C}_{21}\) :

Cross-coupled damping coefficients

\(\bar{C}_{ij}\) :

Damping coefficient

\(\bar{h}\) :

Fluid film thickness (\(h/c_{\text{r}}\))

\(\bar{h}_{\hbox{min} }\) :

Minimum fluid film thickness \((h_{\hbox{min} } /c_{\text{r}} )\)

\(\bar{M}_{\text{c}}\) :

Critical mass parameter \(M_{\text{c}} \left( {c_{\text{r}}^{5} p_{\text{s}} /\mu^{2} R_{j}^{6} } \right)\)

\(N_{j}\) :

Shape function

ξ, η :

Local coordinates system for shape function \(N_{j}\)

\(\bar{p}\) :

Pressure ratio (\(p/p_{\text{s}}\))

\(\bar{p}_{j}\) :

Pressure ratio at jth nodal point \(\left( {p_{j} /p_{\text{s}} } \right)\)

\(\bar{p}_{\hbox{max} }\) :

Maximum pressure ratio \(\left( {p_{\hbox{max} } /p_{\text{s}} } \right)\)

\(\bar{S}_{11}\), \(\bar{S}_{22}\) :

Direct stiffness coefficients

\(\bar{S}_{12}\), \(\bar{S}_{21}\) :

Cross-coupled stiffness coefficients

\(\bar{S}_{ij}\) :

Stiffness coefficient

\(\bar{W}_{\text{a}}\) :

Axial load \(\left( { \bar{W}_{\text{a}} = \frac{{W_{\text{a}} }}{{p_{\text{s}} R_{j}^{2} }} } \right)\)

\(\bar{W}_{\text{r}}\) :

Radial load (\(\bar{W}_{\text{r}} = \frac{{W_{\text{r}} }}{{p_{\text{s}} R_{j}^{2} }}\))

\(\bar{\mu }\) :

Dynamic viscosity (\(\mu /\mu_{\text{r}} )\)

\(\bar{\omega }_{\text{th}}\) :

Threshold speed margin

\(\left[ {\bar{F}} \right]\) :

Assembled fluidity matrix

\(\left\{ {\bar{p}} \right\}\) :

Nodal pressure vector

\(\left\{ {\bar{Q}} \right\}\) :

Nodal flow vector

\(\left\{ {\bar{R}_{\text{H}} } \right\}\) :

Column vector due to hydrodynamic terms

\(\left\{ {\bar{R}_{{x_{j} }} } \right\},\left\{ {\bar{R}_{{z_{j} }} } \right\}\) :

Global vectors due to journal center linear velocities

\(\bar{t}\) :

Time t\(\left( {c_{\text{r}}^{2} p_{\text{s}} /\mu R_{j}^{2} } \right)\)

\(\Delta \bar{X}_{J}\), \(\Delta \bar{Z}_{J}\) :

Small amount of journal movement from steady-state equilibrium journal center

\(\bar{X}_{J} = X_{J} /C_{\text{r}}\), \(\bar{Z}_{J} = Z_{J} /C_{\text{r}}\) :

Coordinates of steady-state equilibrium journal center

\(\Delta \bar{\dot{X}}_{J}\), \(\Delta \bar{\dot{Z}}_{J}\) :

Velocity components of journal center

References

  • Benasciutti D, Gallina M, Munteanu MG, Flumian F (2012) A numerical approach for static and dynamic analysis of deformable journal bearings. World Acad Sci Eng Technol 67:778–783

    Google Scholar 

  • Bouyer J, Fillon M (2011) Experimental measurement of the friction torque on hydrodynamic plain journal bearings during start-up. Tribol Int 44:772–781

    Article  Google Scholar 

  • Chen WJ (2012) Rotordynamics and bearing design of turbochargers. Mech Syst Signal Process 29:77–89

    Article  Google Scholar 

  • Cong S, Khonsari MM (2013) Effect of dimple’s internal structure on hydrodynamic lubrication. Tribol Lett 52(1):415–430

    Google Scholar 

  • Ettles C, Svoboda O (1975) The application of double conical journal bearings in high speed centrifugal pumps—parts 1 and 2. Proc Inst Mech Eng 189(1):221–230

    Article  Google Scholar 

  • Ferron J, Frene J, Boncompain R (1983) A study of the thermohydrodynamic performance of a plain journal bearing comparison between theory and experiments. Trans ASME 105:422–428

    Google Scholar 

  • Gamal MAR, Al-Hanaya AM (2014) MHD flow of a non-Newtonian power law through a conical bearing in a porous medium. J Mod Phys 5:61–67

    Article  Google Scholar 

  • Heshmat H, Hunsberger AZ, Jahanmir S, Walton JF (2006) Prediction of hydrodynamic bearing performance for cardiac assist devices. ASAIO J 52(2):51A

    Article  Google Scholar 

  • Hong G, Xinmin L, Shaoqi C (2009) Theoretical and experimental study on dynamic coefficients and stability for a hydrostatic/hydrodynamic conical bearing. ASME J Tribol 131(701):1–7

    Google Scholar 

  • Jagadeesha KM, Nagaraju T, Sharma SC, Jain SC (2012) 3D surface roughness effects on transient non-Newtonian response of dynamically loaded journal bearings. Tribol Trans 55(1):32–42

    Article  Google Scholar 

  • Khakse PG, Phalle VM, Mantha SS (2016) Performance analysis of a nonrecessed hybrid conical journal bearing compensated with capillary restrictors. Trans ASME J Tribol 138:011703-1–011703-9

    Google Scholar 

  • Kim H, Jang G, Ha H (2012) A generalized Reynolds equation and its perturbation equations for fluid dynamic bearings with curved surfaces. Tribol Int 50:6–15

    Article  Google Scholar 

  • Kim K, Lee M, Lee S, Jang G (2017) Optimal design and experimental verification of fluid dynamic bearings with high load capacity applied to an integrated motor propulsor in unmanned underwater vehicles. Tribol Int 114:221–233

    Article  Google Scholar 

  • Kirk RG, Gunter EJ (1976) Short bearing analysis applied to rotor dynamics journal of engineering for industry. Trans ASME 98:576–592

    Article  Google Scholar 

  • Korneev AY (2014) Rigid-rotor dynamics of conical hydrodynamic bearings. Russ Eng Res 34:131–135

    Article  Google Scholar 

  • Korneev AYu, Yaroslavtsev MM (2010) Dynamic characteristics of conical multiple pad hydrodynamic liquid friction bearings. Russ Eng Res 30(4):365–369

    Article  Google Scholar 

  • Korneev AYu, Savin LA, Yaroslavtsev MM (2010) Static characteristics of conical multiple wedge hydrodynamic liquid friction bearings. Russ Eng Res 30(3):219–223

    Article  Google Scholar 

  • Krzysztof W (2008) Enhancement of memory capacity in HDD micro-bearing with hyperbolic journals. J KONES Powertrain and Transp 15(3):555–560

    Google Scholar 

  • Luis SA (2010) Hydrodynamic fluid film bearings and their effect on the stability of rotating machinery. Texas A&M University College Station, TX 77843-3123, RTO-EN-AVT-143, pp 10-1–10-36

  • Mehrjardi MZ, Rahmatabadi AD, Meybodi RR (2016) A study on the stability performance of noncircular lobed journal bearings with micropolar lubricant. Proc Inst Mech Eng Part J Eng Tribol 230(1):14–30

    Article  Google Scholar 

  • Murthy TSR (1981) Analysis of multi-scallop self-adjusting conical hydrodynamic bearings for high precision spindles. Tribol Int 301:147–150

    Article  Google Scholar 

  • Papadopoulos CA, Nikolakopoulos PG, Gounaris GD (2008) Identification of clearances and stability analysis for a rotor-journal bearing system. Mech Mach Theory 43:411–426

    Article  MATH  Google Scholar 

  • Rajput AK, Sharma SC (2013) Analysis of externally pressurized multirecess conical hybrid journal bearing system using micropolar lubricant. Proc Inst Mech Eng Part J Eng Tribol 227(9):943–961

    Article  Google Scholar 

  • Sharma SC, Rajput AK (2012) Influence of micropolar lubrication on the performance of 4-pocket capillary compensated conical hybrid journal bearing. Adv Tribol 2012:898252. https://doi.org/10.1155/2012/898252

    Article  Google Scholar 

  • Sharma SC, Phalle VM, Jain SC (2011a) Performance analysis of a multi-recess capillary compensated conical hydrostatic journal bearing system. Tribol Int 44:617–626

    Article  Google Scholar 

  • Sharma SC, Phalle VM, Jain SC (2011b) Influence of wear on the performance of a multirecess conical hybrid journal bearing compensated with orifice restrictor. Tribol Int 44:1754–1764

    Article  Google Scholar 

  • Sumikura H, Fukunaga K, Funakubo A, Fukui Y (2005) Development of an axial flow blood pump with hydrodynamic conical bearings. ASAIO J 51(2):34A

    Article  Google Scholar 

  • Sumikura H, Fukunaga K, Funakubo A, Fukui Y (2006) Improvement and evaluation of an enclosed-impeller type axial flow blood pump with hydrodynamic conical bearings. ASAIO J 52(2):32A

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from the All India Council for Technical Education (AICTE), New Delhi, India, under Research Promotion Scheme (RPS) Ref. No. 8-221/RIFD/RPS/Policy-1/2014-15 is gratefully acknowledged. The author is grateful to the Director, Veermata Jijabai Technological Institute (V.J.T.I), Mumbai, and Principal, K. J. Somaiya College of Engineering (KJSCE), Mumbai, for all support provided for this study which is respectfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ajay Kumar Gangrade.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gangrade, A.K., Phalle, V.M. & Mantha, S.S. Performance Analysis of a Conical Hydrodynamic Journal Bearing. Iran J Sci Technol Trans Mech Eng 43, 559–573 (2019). https://doi.org/10.1007/s40997-018-0217-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0217-2

Keywords

Navigation