Skip to main content
Log in

Parametric Study on the Geometric and Kinetic Aspects of the Slider-Crank Mechanism

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

Appropriate performance of slider-crank mechanisms in cutting machines depends on suitable selection of its parameters. The reaction forces in joints and the internal torque are changed when the crank rotates; therefore, investigating the effects of mechanism parameters on the internal torque and the reaction forces in joints in an operational cycle would be impossible. In this study, an efficient and simply implementable procedure based on averaging of kinetic parameters is utilized to determine how the crank and connecting rod lengths, crank angular velocity, and the inertia effects of the slider influence the kinetic parameters. The model was also simulated to obtain an optimal crank to connecting rod length ratio. Furthermore, in a cutting machine, the cutting speed would be increased using two methods: (1) increasing the crank length and (2) increasing the crank angular velocity. A simulation is performed to understand the advantages and drawbacks of both methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Akbari S, Fallahi F, Pirbodaghi T (2016) Dynamic analysis and controller design for a slider-crank mechanism with piezoelectric actuators. J Comput Des Eng 3:312–321

    Google Scholar 

  • Alavi SR, Rahmati M, Ziaei-Rad S (2017) A new approach to design safe-supported HDD against random excitation by using optimization of rubbers spatial parameters. Microsyst Technol 23(6):2023–2032

    Article  Google Scholar 

  • Badlani M, Midha A (1983) Effect of internal material damping on the dynamics of a slider-crank mechanism. J Mech Transm Autom Des 105(3):452–459

    Article  Google Scholar 

  • Balli SS, Chand S (2002) Transmission angle in mechanisms (Triangle in mech). Mech Mach Theory 37(2):175–195

    Article  MATH  Google Scholar 

  • Bolund B, Bernhoff H, Leijon M (2007) Flywheel energy and power storage systems. Renew Sustain Energy Rev 11(2):235–258

    Article  Google Scholar 

  • Chang D, Kim J, Choi D, Cho KJ, Seo T, Kim J (2013) Design of a slider-crank leg mechanism for mobile hopping robotic platforms. J Mech Sci Technol 27(1):207–214

    Article  Google Scholar 

  • Chen JS, Huang CL (2001) Dynamic analysis of flexible slider-crank mechanisms with non-linear finite element method. J Sound Vib 246(3):389–402

    Article  Google Scholar 

  • Cveticanin L, Maretic R (2000) Dynamic analysis of a cutting mechanism. Mech Mach Theory 35(10):1391–1411

    Article  MATH  Google Scholar 

  • Daniel GB, Cavalca KL (2011) Analysis of the dynamics of a slider–crank mechanism with hydrodynamic lubrication in the connecting rod–slider joint clearance. Mech Mach Theory 46(10):1434–1452

    Article  MATH  Google Scholar 

  • Erkaya S, Uzmay İ (2009) Optimization of transmission angle for slider-crank mechanism with joint clearances. Struct Multidiscip Optim 37(5):493–508

    Article  MATH  Google Scholar 

  • Erkaya S, Uzmay İ (2010) Experimental investigation of joint clearance effects on the dynamics of a slider-crank mechanism. Multibody SysDyn 24(1):81–102

    Article  MATH  Google Scholar 

  • Fallahi B, Lai S, Venkat C (1995) A finite element formulation of a flexible slider crank mechanism using local coordinates. J Dyn Syst Meas Contr 117(3):329–335

    Article  MATH  Google Scholar 

  • Farahanchi F, Shaw SW (1994) Chaotic and periodic dynamics of a slider-crank mechanism with slider clearance. J Sound Vib 177(3):307–324

    Article  MATH  Google Scholar 

  • Fattahi I, Mirdamadi HR (2017) Novel composite finite element model for piezoelectric energy harvesters based on 3D beam kinematics. Compos Struct 1(179):161–171

    Article  Google Scholar 

  • Flores P, Ambrósio J, Claro JC, Lankarani HM, Koshy CS (2006) A study on dynamics of mechanical systems including joints with clearance and lubrication. Mech Mach Theory 41(3):247–261

    Article  MATH  Google Scholar 

  • Fung RF, Chen KW (1998) Dynamic analysis and vibration control of a flexible slider–crank mechanism using PM synchronous servo motor drive. J Sound Vib 214(4):605–637

    Article  MathSciNet  MATH  Google Scholar 

  • Fung RF, Chiang CL, Chen SJ (2009) Dynamic modelling of an intermittent slider–crank mechanism. Appl Math Model 33(5):2411–2420

    Article  MathSciNet  MATH  Google Scholar 

  • Ha JL, Fung RF, Chen KY, Hsien SC (2006) Dynamic modeling and identification of a slider-crank mechanism. J Sound Vib 289(4):1019–1044

    Article  Google Scholar 

  • Han Y, Ren Z, Tong Y (2012) General design method of flywheel rotor for energy storage system. Energy Proced 31(16):359–364

    Article  Google Scholar 

  • Hsieh SR, Shaw SW (1994) The dynamic stability and non-linear resonance of a flexible connecting rod: single-mode model. J Sound Vib 170(1):25–49

    Article  MATH  Google Scholar 

  • Khemili I, Romdhane L (2008) Dynamic analysis of a flexible slider–crank mechanism with clearance. Eur J Mech-A/Solids 27(5):882–898

    Article  MATH  Google Scholar 

  • Kimbrell JT (1991) Kinematics analysis and synthesis. McGraw-Hill, New York, pp 14–15

    Google Scholar 

  • Koser K (2004) A slider crank mechanism based robot arm performance and dynamic analysis. Mech Mach Theory 39(2):169–182

    Article  MATH  Google Scholar 

  • Meriam JL, Kraige LG (2012) Engineering mechanics: dynamics. Wiley, Hoboken

    MATH  Google Scholar 

  • Munson BR, Rothmayer AP, Okiishi TH (2012) Fundamentals of fluid mechanics. Wiley, Hoboken

    Google Scholar 

  • Myklebust A, Fernandez EF, Choy TS (1984) Dynamic response of slider-crank machines during startup. J Mech Transm Autom Des 106(4):452–457

    Article  Google Scholar 

  • Naik DP, Amarnath C (2013) Planar slider-crank mechanism adjustable for prescribed dead-center positions. J Indian Inst Sci 66(4):247

    Google Scholar 

  • Rahmati M, Alavi SR, Ziaei-Rad S (2017) Improving the read/write performance of hard disk drives under external excitation sources based on multi-objective optimization. Microsyst Technol 23(8):3331–3345

    Article  Google Scholar 

  • Ranjbarkohan M, Rasekh M, Hoseini AH, Kheiralipour K, Asadi MR (2011) Kinematics and kinetic analysis of the slider-crank mechanism in otto linear four cylinder Z24 engine. J Mech Eng Res 3(3):85–95

    Google Scholar 

  • Rao SS (2016) Mechanical vibrations. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Reis VL, Daniel GB, Cavalca KL (2014) Dynamic analysis of a lubricated planar slider–crank mechanism considering friction and Hertz contact effects. Mech Mach Theory 30(74):257–273

    Article  Google Scholar 

  • Shigley JE, Mischke CR (2002) Mechanical engineering design. Mc Graw-Hill, New York City

    Google Scholar 

  • Shoup TE (1984) The design of an adjustable, three dimensional slider crank mechanism. Mech Mach Theory 19(1):107–111

    Article  Google Scholar 

  • Simeon B (1996) Modelling a flexible slider crank mechanism by a mixed system of DAEs and PDEs. Math Model Syst 2(1):1–8

    Article  MATH  Google Scholar 

  • Soong K, Thompson BS (1990) A theoretical and experimental investigation of the dynamic response of a slider-crank mechanism with radial clearance in the gudgeon-pin joint. J Mech Des 112(2):183–189

    Article  Google Scholar 

  • Söylemez E (2002) Classical transmission-angle problem for slider–crank mechanisms. Mech Mach Theory 37(4):419–425

    Article  MATH  Google Scholar 

  • Sun JW, Waldron KJ (1981) Graphical transmission angle control in planar linkage synthesis. Mech Mach Theory 16(4):385–397

    Article  Google Scholar 

  • Tanık E (2011) Transmission angle in compliant slider-crank mechanism. Mech Mach Theory 46(11):1623–1632

    Article  Google Scholar 

  • Varedi SM, Daniali HM, Dardel M, Fathi A (2015) Optimal dynamic design of a planar slider-crank mechanism with a joint clearance. Mech Mach Theory 30(86):191–200

    Article  Google Scholar 

  • Wilson R, Fawcett JN (1974) Dynamics of the slider-crank mechanism with clearance in the sliding bearing. Mech Mach Theory 9(1):61–80

    Article  Google Scholar 

  • Xu LX, He X, Han L, Yang YH (2014) Dynamic analysis of a slider-crank mechanism with two types of non-ideal revolute joints. Proc Inst Mech Eng Part K: J Multi-body Dyn 9:1464419314562265

    Google Scholar 

  • Yamin JA, Dado MH (2004) Performance simulation of a four-stroke engine with variable stroke-length and compression ratio. Appl Energy 77(4):447–463

    Article  Google Scholar 

  • Zheng E, Zhou X (2014) Modeling and simulation of flexible slider-crank mechanism with clearance for a closed high speed press system. Mech Mach Theory 30(74):10–30

    Article  Google Scholar 

  • Zhou H, Ting KL (2002) Adjustable slider–crank linkages for multiple path generation. Mech Mach Theory 37(5):499–509

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iman Fattahi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pishvaye Naeeni, I., Keshavarzi, A. & Fattahi, I. Parametric Study on the Geometric and Kinetic Aspects of the Slider-Crank Mechanism. Iran J Sci Technol Trans Mech Eng 43, 405–417 (2019). https://doi.org/10.1007/s40997-018-0214-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0214-5

Keywords

Navigation