Skip to main content

Self-Similar Solution of Radial Stagnation Point Flow and Heat Transfer of a Viscous, Compressible Fluid Impinging on a Rotating Cylinder

Abstract

In this study, the radial stagnation point flow of strain rate \(\bar{k}\) impinging on a cylinder rotating at constant angular velocity ω and its heat transfer are investigated. Reduction in the Navier–Stokes equations and energy equation to primary nonlinear ordinary differential equation systems is obtained by use of appropriate transformations when the angular velocity and wall temperature or wall heat flux all are constant. The impinging free stream is steady and normal to the surface from all sides, and the range of Reynolds number variation (\(Re = \bar{k}a^{2} /2\upsilon\)) is 0.1–1000 in which a and υ are cylinder radius and kinematic viscosity, respectively. Flow results are presented for selected values of compressibility factor and different values of Prandtl numbers along with shear stress and Nusselt number. For all values of Reynolds numbers and surface temperature or surface heat flux, as compressibility factor increases the radial velocity field, the heat transfer coefficient and the wall shear stress increase, whereas the angular velocity field decreases. The rotating movement of the cylinder does not have any effect on the radial component of the velocity, but its increase increases the angular component of the fluid velocity field and the surface shear stress.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Abbreviations

a :

Cylinder radius

\(c(\eta )\) :

Density ratio

\(f(\eta )\) :

Function of \(\eta\)

\(G(\eta )\) :

Function of \(\eta\)

\(k\) :

Thermal conductivity

\(\bar{k}\) :

Free stream strain rate

\(p\) :

Fluid pressure

\(P\) :

Non-dimensional pressure

\(Pr\) :

Prandtl number

\(q_{\text{w}}\) :

Heat flux at the wall

\(r,\phi ,z\) :

Cylindrical coordinates

\(Re = \frac{{\bar{k}a^{2} }}{2\upsilon }\) :

Reynolds number

\(T\) :

Temperature

\(T_{\text{w}}\) :

Wall temperature

\(T_{\infty }\) :

Free stream temperature

\(u\) :

Radial component of the velocity

\(v\) :

Angular component of the velocity

\(w\) :

Axial component of the velocity

\(Nu\) :

Nusselt number

\(\beta\) :

Compressibility factor

\(\varGamma (\eta )\) :

Function related to density

\(\eta\) :

Similarity variable

\(\theta (\eta )\) :

Non-dimensional temperature

\(\mu\) :

Viscosity

\(\upsilon\) :

Kinematic viscosity

\(\omega\) :

Angular velocity of the cylinder

\(\rho (\eta )\) :

Fluid density

\(\rho_{\infty }\) :

Free stream density

\(\sigma\) :

Shear stress

\(\psi\) :

Stream function

\(\hat{\psi } = \frac{\psi }{{0.5\bar{k}a^{3} }}\) :

Normalized stream function

References

  • Abbasi AS, Rahimi AB (2009a) Non-axisymmetric three-dimensional stagnation-point flow and heat transfer on a flat plate. J Fluids Eng 131(7):074501.1–074501.5

    Google Scholar 

  • Abbasi AS, Rahimi AB (2009b) Three-dimensional stagnation-point flow and heat transfer on a flat plate with transpiration. J Thermophys Heat Transfer 23(3):513–521

    Article  Google Scholar 

  • Abbasi AS, Rahimi AB (2012) Investigation of two-dimensional stagnation-point flow and heat transfer impinging on a flat plate. J Heat Transf Tech Brief 134(6):064501

    Article  Google Scholar 

  • Abbasi AS, Rahimi AB, Niazman H (2011) Exact solution of three-dimensional unsteady stagnation flow on a heated plate. J Thermodyn Heat Transf 25(1):55–58

    Article  Google Scholar 

  • Afzal N, Ahmad S (1975) Effect of suction and injection on self-similar solutions of second-order boundary layer equations. Int J Heat Mass Transf 18:607–614

    Article  MATH  Google Scholar 

  • Chamkha AJ (2000) Flow of two-immiscible fluids in porous and nonporous channels. J Fluids Eng 122(1):117–124

    Article  Google Scholar 

  • Chamkha AJ, Ahmed SE (2011) Similarity solution for unsteady MHD flow near a stagnation point of a three-dimensional porous body with heat and mass transfer, heat generation/absorption and chemical reaction. J Appl Fluid Mech 4(1):87–94

    MATH  Google Scholar 

  • Chamkha AJ, Khaled AA (2000) Similarity solutions for hydromagnetic mixed convection heat and mass transfer for Hiemenz flow through porous media. Int J Numer Meth Heat Fluid Flow 10(1):94–115

    Article  MATH  Google Scholar 

  • Cunning GM, Davis AMJ, Weidman PD (1998) Radial stagnation flow on a rotating cylinder with uniform transpiration. J Eng Math 33:113–128

    Article  MathSciNet  MATH  Google Scholar 

  • Davey A (1951) Boundary layer flow at a Saddle point of attachment. J Fluid Mech 10:593–610

    Article  MathSciNet  MATH  Google Scholar 

  • Gersten K, Papenfuss HD, Gross JF (1978) Influence of the Prandtl number on second-order heat transfer due to surface curvature at a three-dimensional stagnation point. Int J Heat Mass Transf 21:275–284

    Article  Google Scholar 

  • Gorla RSR (1976) Heat transfer in an axisymmetric stagnation flow on a cylinder. Appl Sci Res 32:541–553

    Article  Google Scholar 

  • Gorla RSR (1977) Unsteady laminar axisymmetric stagnation flow over a circular cylinder. Dev Mech 9:286–288

    Google Scholar 

  • Gorla RSR (1978a) Nonsimilar axisymmetric stagnation flow on a moving cylinder. Int J Sci 16:392–400

    MATH  Google Scholar 

  • Gorla RSR (1978b) Transient response behavior of an axisymmetric stagnation flow on a circular cylinder due to time-dependent free stream velocity. Lett Appl Eng Sci 16:493–502

    MATH  Google Scholar 

  • Gorla RSR (1979) Unsteady viscous flow in the vicinity of an axisymmetric stagnation-point on a cylinder. Int. Sci. 17:87–93

    Article  Google Scholar 

  • Grosch CE, Salwen H (1982) Oscillating stagnation-point flow. Proc R Soc Lond A384:175–190

    Article  MathSciNet  MATH  Google Scholar 

  • Hiemenz K (1911) Die grenzchicht an einem in den gleichformingen Flussigkeitsstrom eingetauchten geraden KreisZylinder. Dinglers Polytech J 326:321–410

    Google Scholar 

  • Homann FZ (1936) Der EINFLUSS GROSSER Zahighkeit bei der Strmung um den Zylinder und um die Kugel. Z Angew Math Mech 16:153–164

    Article  MATH  Google Scholar 

  • Hong L, Wang CY (2009) Annular axisymmetric stagnation flow on a moving cylinder. Int J Eng Sci 47:141–152

    Article  MathSciNet  MATH  Google Scholar 

  • Howarth L (1951) The boundary layer in three-dimensional flow. Part II. The flow near stagnation point. Philos Mag 42:1433–1440

    Article  MathSciNet  MATH  Google Scholar 

  • Katz A (1972) Transformations of the compressible boundary layer equations. SIAM J Allied Math 22(4):604–611

    Article  MATH  Google Scholar 

  • Kumari M, Nath G (1980) Unsteady compressible 3-dimensional boundary layer flow near an axisymmetric stagnation point with mass transfer. Int J Eng Sci 18:1285–1300

    Article  MATH  Google Scholar 

  • Kumari M, Nath G (1981) Self-similar solution of unsteady compressible three-dimensional stagnation-point boundary layers. J Appl Math Phys 32:267–276

    Google Scholar 

  • Libby PA (1967) Heat and mass transfer at a general three-dimensional stagnation point. AIAA J 5(3):507–517

    Article  MATH  Google Scholar 

  • Magyari E, Chamkha AJ (2008) Exact analytical results for the thermosolutal MHD Marangoni boundary layers. Int J Therm Sci 47(7):848–857

    Article  Google Scholar 

  • Mohammadiun H, Rahimi AB (2012) Stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder. J Thermophys Heat Transfer 26(3):494–502

    Article  Google Scholar 

  • Mohammadiun H, Rahimi AB, Kianifar A (2013) Axisymmetric stagnation-point flow and heat transfer of a viscous, compressible fluid on a cylinder with constant heat flux. Sci Iran B 20(1):185–194

    Google Scholar 

  • Mudhaf AA, Chamkha AJ (2005) Similarity solutions for MHD thermosolutal Marangoni convection over a flat surface in the presence of heat generation or absorption effects. Heat Mass Transf 42:112–121

    Article  Google Scholar 

  • Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1997) Numerical recipes, the art of scientific computing. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Rahimi AB, Saleh R (2007) Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a rotating cylinder with time-dependent angular velocity and uniform transpiration. J Fluids Eng 129:107–115

    Article  Google Scholar 

  • Rahimi AB, Saleh R (2008) Similarity solution of unaxisymmetric heat transfer in stagnation-point flow on a cylinder with simultaneous axial and rotational movements. J Heat Transf Tech Brief 130:054502-1–054502-5

    Google Scholar 

  • Rahimi AB, Mohammadiun H, Mohammadiun M (2016) Axisymmetric stagnation flow and heat transfer of a compressible fluid impinging on a cylinder moving axially. ASME J Heat Transf 138(2):022201

    Article  Google Scholar 

  • Saleh R, Rahimi AB (2004) Axisymmetric stagnation-point flow and heat transfer of a viscous fluid on a moving cylinder with time-dependent axial velocity and uniform transpiration. J Fluids Eng 126:997–1005

    Article  Google Scholar 

  • Subhashini SV, Nath G (1999) Unsteady compressible flow in the stagnation region of two-dimensional and axisymmetric bodies. Acta Mech 134:135–145

    Article  MATH  Google Scholar 

  • Takhar HS, Chamkha AJ, Nath J (1999) Unsteady axisymmetric stagnation-point flow of a viscous fluid on a cylinder. Int J Eng Sci 37:1943–1957

    Article  MATH  Google Scholar 

  • Takhar HS, Chamkha AJ, Nath G (2000) Combined heat and mass transfer along a vertical moving cylinder with a free stream. Heat Mass Transf 36:237–246

    Article  Google Scholar 

  • Takhar HS, Chamkha AJ, Nath G (2001) Unsteady three-dimensional MHD-boundary-layer flow due to the impulsive motion of a stretching surface. Acta Mech 146(1):59–71

    Article  MATH  Google Scholar 

  • Takhar HS, Chamkha AJ, Nath G (2002) Natural convection on a vertical cylinder embedded in a thermally stratified high-porosity medium. Int J Therm Sci 41(1):83–93

    Article  Google Scholar 

  • Umavathi JC, Chamkha AJ (2005) Unsteady two-fluid flow and heat transfer in a horizontal channel. Heat Mass Transf 42:81–90

    Article  Google Scholar 

  • Wang CY (1973) Axisymmetric stagnation flow towards a moving plate. Am Inst Chem Eng J 19(5):1080–1082

    Article  Google Scholar 

  • Wang CY (1974) Axisymmetric stagnation flow on a cylinder. Q Appl Math 32:207–213

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamid Mohammadiun.

Appendix

Appendix

Details of derivation of Eqs. (11), (12), (13) and (17) are presented as follows:

$$\begin{aligned} \eta = &\, \frac{2}{{a^{2} }}\int\limits_{a}^{r} {\frac{\rho r}{{\rho_{\infty } }}{\text{d}}r} \Rightarrow \frac{{{\text{d}}\eta }}{{{\text{d}}r}} = \frac{2\rho r}{{a^{2} \rho_{\infty } }} \to \frac{{{\text{d}}\eta }}{{{\text{d}}r}} = \frac{2r}{{a^{2} }}c(\eta ) \to 2r{\text{d}}r \\ = &\, a^{2} \frac{{{\text{d}}\eta }}{c(\eta )}\mathop{\longrightarrow}\limits{{\int {} }}\int_{a}^{r} {2r{\text{d}}r = a^{2} \int_{0}^{\eta } {\frac{{{\text{d}}\eta }}{c(\eta )}} } \to r^{2} - a^{2} \\ = &\, a^{2} \int_{0}^{\eta } {\frac{{{\text{d}}\eta }}{c(\eta )}} \to r^{2} = a^{2} \left[ {1 + \int_{0}^{\eta } {\frac{{{\text{d}}\eta }}{c(\eta )}} } \right] \\ \end{aligned}$$

With definition: \(\varGamma (\eta ) = \left[ {1 + \int_{0}^{\eta } {\frac{{{\text{d}}\eta }}{c(\eta )}} } \right]\), we have: \(r^{2} = a^{2} \varGamma (\eta )\).

  1. 1.

    To derive pressure:

By use of non-dimensional pressure as:

$$p = \frac{P}{{\rho_{\infty } \bar{k}^{2} a^{2} }} \Rightarrow P = \rho_{\infty } \bar{k}^{2} a^{2} p$$

Start from r-momentum:

$$u\frac{\partial (\rho u)}{\partial r} - \frac{{\rho v^{2} }}{r} + w\frac{\partial (\rho u)}{\partial z} = - \frac{\partial P}{\partial r} + \upsilon \left\{ {\frac{1}{r}\frac{\partial }{\partial r}\left[ {r\frac{\partial (\rho u)}{\partial r}} \right] - \frac{(\rho u)}{{r^{2} }} + \frac{{\partial^{2} (\rho u)}}{{\partial z^{2} }}} \right\}$$

But:

$$\begin{aligned} \rho u = &\, - \frac{{\bar{k}a^{2} }}{r}\rho_{\infty } f(\eta ) \Rightarrow \frac{\partial (\rho u)}{\partial r} = \frac{{\bar{k}a^{2} }}{{r^{2} }}\rho_{\infty } f - 2\bar{k}\rho_{\infty } cf^{\prime} \Rightarrow r\frac{\partial (\rho u)}{\partial r} \\ = &\, \frac{{\bar{k}a^{2} }}{r}\rho_{\infty } f - 2\bar{k}\rho_{\infty } cf^{\prime}r \Rightarrow \frac{\partial }{\partial \,r}\left[ {r\frac{\partial (\rho u)}{\partial r}} \right] \\ = &\, - \frac{{\bar{k}a^{2} }}{{r^{2} }}\rho_{\infty } f + \underline{{\frac{{\bar{k}a^{2} }}{r}\rho_{\infty } f^{\prime}(\eta )\frac{2r}{{a^{2} }}c}} - 2\bar{k}\rho_{\infty } (cf^{\prime})^{\prime}\frac{{2r^{2} }}{{a^{2} }}c\underline{{ - 2\bar{k}\rho_{\infty } cf^{\prime}}} \Rightarrow \frac{1}{r}\frac{\partial }{\partial \,r}\left[ {r\frac{\partial \,(\rho \,u)}{\partial \,r}} \right] \\ = & - \frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } \,f - \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } c(cf^{\prime})^{\prime} \\ \end{aligned}$$

Then r-momentum is:

$$\begin{aligned} & - \frac{{\bar{k}a^{2} }}{r}\frac{{\rho_{\infty } }}{\rho }f(\eta )\left[ {\frac{{\bar{k}a^{2} }}{{r^{2} }}\rho_{\infty } f(\eta ) - 2\bar{k}\rho_{\infty } cf^{\prime}} \right] - \frac{{\bar{k}^{2} a^{4} }}{{r^{3} }}\rho_{\infty } \frac{{G^{2} }}{c} \\ & \quad = - \rho_{\infty } \bar{k}^{2} a^{2} \frac{\partial \,p}{\partial \,\eta }\frac{2r}{{a^{2} }}c + \upsilon \left[ {\underline{{ - \frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } \,f}} - \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } c(cf^{\prime})^{\prime} + \underline{{\frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } \,f}} } \right] \\ \end{aligned}$$

After omitting underlined phrases:

$$- \frac{{\bar{k}^{2} a^{4} }}{{r^{3} }}\frac{{\rho_{\infty } }}{\rho }\rho_{\infty } f^{2} + \frac{{2\bar{k}^{2} a^{2} }}{r}\frac{{\rho_{\infty } }}{\rho }\rho_{\infty } ff^{\prime} - \frac{{\bar{k}^{2} a^{4} }}{{r^{3} }}\rho_{\infty } \frac{{G^{2} }}{c} = - 2\rho_{\infty } \bar{k}^{2} cr\frac{\partial \,p}{\partial \,\eta } - \frac{{4\bar{k}\upsilon }}{{a^{2} }}rc\rho_{\infty } (cf^{\prime})^{\prime}$$

Dividing by \(2\bar{k}^{2} r\rho_{\infty }\) and using \(r^{2} = a^{2} \varGamma (\eta )\),

$$\begin{aligned} - \frac{1}{2}\frac{{a^{4} }}{{r^{4} }}\frac{{f^{2} }}{c} + \frac{{a^{2} }}{{r^{2} }}\frac{{ff^{\prime}}}{c} - \frac{{a^{4} }}{{2\,r^{4} }}\frac{{G^{2} }}{c} = & - c\frac{\partial \,p}{\partial \,\eta } - \frac{2\upsilon }{{\bar{k}a^{2} }}c(cf^{\prime})^{\prime}\mathop{\longrightarrow}\limits{{r^{2} = a^{2} \varGamma (\eta )}}\frac{\partial p}{\partial \,\eta } = \frac{1}{2}\left( {\frac{f}{\varGamma c}} \right)^{2} \\ & - \frac{{ff^{\prime}}}{{\varGamma \,c^{2} }} + \frac{1}{2}\left( {\frac{G}{\varGamma c}} \right)^{2} - \frac{1}{Re}(cf^{\prime})^{\prime} \\ \end{aligned}$$

Integrating this, we have:

$$p - p_{0} = \int_{0}^{\eta } {\left[ {\frac{1}{2}\left( {\frac{f}{\varGamma \,c}} \right)^{2} - \frac{{ff^{\prime}}}{{\varGamma \,c^{2} }} + \frac{1}{2}\left( {\frac{G}{\varGamma c}} \right)^{2} - \frac{1}{Re}(cf^{\prime})^{\prime}} \right]{\text{d}}\eta + c_{1} (Z)}$$

Here, \(c_{1}\) is a function of \(z\) which will be calculated by use of z-momentum as

$$\,u\frac{\partial \,(\rho \,w)}{\partial \,r} + \,w\frac{\partial \,(\rho \,w)}{\partial \,z} = - \frac{\partial P}{\partial \,z}$$

But at \(r \to \infty:\rho \,w = 2\,\bar{k}\,z\rho_{\infty } \Rightarrow \left\{ \begin{aligned} \frac{\partial \,(\rho \,w)}{\partial \,r} = 0 \hfill \\ \frac{\partial \,(\rho \,w)}{\partial \,z} = 2\,\bar{k}\rho_{\infty } \hfill \\ \end{aligned} \right.,\quad \frac{\partial \,P}{\partial \,z} = \rho_{\infty } \bar{k}^{2} a^{2} \frac{\partial \,p}{\partial \,z}\).

Then:

$$- \rho_{\infty } \bar{k}^{2} a^{2} \frac{{{\text{d}}c_{1} (z)}}{{{\text{d}}\,z}} = 2\bar{k}z(2\bar{k}\rho_{\infty } ) \Rightarrow \frac{{{\text{d}}c_{1} (z)}}{{{\text{d}}\,z}} = - \frac{4z}{{a^{2} }} \Rightarrow c_{1} (z) = - 2\left( {\frac{z}{a}} \right)^{2}$$

This gives pressure as:

$$p - p_{0} = \int_{0}^{\eta } {\left[ {\frac{1}{2}\left[ {\frac{f}{\varGamma \,c}} \right]^{2} - \frac{{ff^{\prime}}}{{\varGamma c^{2} }} + \frac{1}{2}\left( {\frac{G}{\varGamma c}} \right)^{2} - \frac{1}{Re}(cf^{\prime})^{\prime}} \right]{\text{d}}\eta - 2\left( {\frac{z}{a}} \right)^{2} }$$
  1. 2.

    To derive (11):

Start from z-momentum:

$$u\frac{\partial (\rho w)}{\partial r} + w\frac{\partial (\rho w)}{\partial z} = - \frac{\partial P}{\partial z} + \upsilon \left\{ {\frac{1}{r}\frac{\partial }{\partial r}\left[ {r\frac{\partial (\rho w)}{\partial r}} \right] + \frac{{\partial^{2} (\rho w)}}{{\partial z^{2} }}} \right\}$$

But:

$$\begin{aligned} \frac{\partial (\rho \,w)}{\partial \,r} = &\, \frac{\partial (\rho \,w)}{\partial \eta }\frac{\partial \eta }{\partial \,r} = (2\bar{k}c^{\prime}f^{\prime}\,z + 2\bar{k}cf^{\prime\prime}\,z)\rho_{\infty } \frac{2r}{{a^{2} }}c \Rightarrow r\frac{\partial (\rho \,w)}{\partial \,r} \\ =& \,(2\bar{k}cc^{\prime}f^{\prime}\,z + 2\bar{k}c^{2} f^{\prime\prime}\,z)\rho_{\infty } \frac{{2r^{2} }}{{a^{2} }} \Rightarrow \frac{\partial }{\partial \,r}\left[ {r\frac{\partial (\rho \,w)}{\partial \,r}} \right] \\ = & \,\left[ {2\bar{k}cc^{\prime}f^{\prime}\,z + 2\bar{k}c^{2} f^{\prime\prime}\,z} \right]\rho_{\infty } \frac{4r}{{a^{2} }} + \left[ {2\bar{k}(c^{\prime})^{2} cf^{\prime}\,z + 2\bar{k}c^{2} c^{\prime\prime}f^{\prime}\,z + 6\bar{k}c^{2} c^{\prime}f^{\prime\prime}\,z} \right. \\ & + \left. {2\bar{k}c^{3} f^{\prime\prime\prime}\,z} \right]\rho_{\infty } \frac{{4r^{3} }}{{a^{4} }} \Rightarrow \frac{1}{r}\frac{\partial }{\partial \,r}\left[ {r\frac{\partial (\rho \,w)}{\partial \,r}} \right] \\ = & \left[ {2\bar{k}cc^{\prime}f^{\prime}\,z + 2\bar{k}c^{2} f^{\prime\prime}\,z} \right]\rho_{\infty } \frac{4}{{a^{2} }} + \left[ {2\bar{k}(c^{\prime})^{2} cf^{\prime}\,z + 2\bar{k}c^{2} c^{\prime\prime}f^{\prime}\,z + 6\bar{k}c^{2} c^{\prime}f^{\prime\prime}\,z} \right. \\ & + \left. {2\bar{k}c^{3} f^{\prime\prime\prime}\,z} \right]\rho_{\infty } \frac{4}{{a^{2} }}\varGamma (\eta ) \\ \end{aligned}$$

Substitute in z-momentum:

$$\begin{aligned} & - \frac{{\bar{k}a^{2} }}{r}\frac{{\rho_{\infty } }}{\rho }f(2\bar{k}c^{\prime}f^{\prime}z + 2\bar{k}cf^{\prime\prime}\,z)\rho_{\infty } \frac{2r}{{a^{2} }}\frac{\rho }{{\rho_{\infty } }} + \frac{1}{\rho }(2\bar{k}\rho_{\infty } cf^{\prime}\,z)2\bar{k}\rho_{\infty } \frac{\rho }{{\rho_{\infty } }}f^{\prime} = \upsilon \left\{ {\left[ {2Kcc^{\prime}f\,z + 2Kc^{2} f^{\prime\prime}\,z} \right]\rho_{\infty } \frac{4}{{a^{2} }} + \left[ {2\bar{k}(c^{\prime})^{2} cf^{\prime}\,z + 2\bar{k}c^{2} c^{\prime\prime}f^{\prime}\,z + 6\bar{k}c^{2} c^{\prime}f^{\prime\prime}\,z} \right.} \right. \\ & + \left. {\left. {2\bar{k}c^{3} f^{\prime\prime\prime}\,z} \right]\rho_{\infty } \frac{4}{{a^{2} }}\varGamma (\eta )} \right\} - \rho_{\infty } \bar{k}^{2} a^{2} \left( { - \frac{4z}{{a^{2} }}} \right) \\ \end{aligned}$$

Equating the coefficient of z, the equation for \(f\) is:

$$\begin{aligned} & - 4\bar{k}^{2} c^{\prime}f\,f^{\prime} - 4\bar{k}^{2} cf\,f^{\prime\prime} + 4\bar{k}^{2} c(f^{\prime})^{2} \\ & \quad = \frac{{8\bar{k}\upsilon }}{{a^{2} }}cc^{\prime}f^{\prime} + \frac{{8\bar{k}\upsilon }}{{a^{2} }}c^{2} f^{\prime\prime} + \frac{{8\bar{k}\upsilon }}{{a^{2} }}(c^{\prime})^{2} c\varGamma \,f^{\prime} \\ & \quad \quad + \frac{{8\bar{k}\upsilon }}{{a^{2} }}c^{2} c^{\prime\prime}\varGamma \,f^{\prime} + \frac{{24\bar{k}\upsilon }}{{a^{2} }}c^{2} c^{\prime}\,f^{\prime\prime} + \frac{{8\bar{k}\upsilon }}{{a^{2} }}c^{3} \varGamma \,f^{\prime\prime\prime} + 4\bar{k}^{2} \\ \end{aligned}$$
  1. 3.

    To derive (12):

Start from φ-momentum:

$$u\frac{\partial (\rho v)}{\partial r} + \frac{\rho uv}{r} + w\frac{\partial (\rho v)}{\partial z} = \upsilon \left\{ {\frac{1}{r}\frac{\partial }{\partial r}\left[ {r\frac{\partial (\rho v)}{\partial r}} \right] - \frac{(\rho v)}{{r^{2} }} + \frac{{\partial^{2} (\rho v)}}{{\partial z^{2} }}} \right\}$$

But:

$$\frac{\partial \,(\rho \,v)}{\partial \,r} = - \bar{k}\frac{{a^{2} }}{{r^{2} }}\rho_{\infty } G(\eta ) + \bar{k}\frac{{a^{2} }}{r}\rho_{\infty } G^{\prime}(\eta )\frac{2r}{{a^{2} }}C(\eta )$$

And

$$\frac{1}{r}\frac{\partial }{\partial r}\left[ {r\frac{\partial (\rho v)}{\partial r}} \right] = \frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } G(\eta ) + \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } cc^{\prime } G^{\prime } + \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } c^{2} G^{\prime \prime }$$

Then φ-momentum is:

$$\begin{aligned} & - \frac{{\bar{k}a^{2} }}{r}\frac{f}{c}\left( { - \frac{{\bar{k}a^{2} }}{{r^{2} }}\rho_{\infty } G + 2\bar{k}\rho_{\infty } cG^{\prime}} \right) + \frac{1}{r}\left( { - \frac{{\bar{k}a^{2} }}{r}\rho_{\infty } f\frac{{\bar{k}a^{2} }}{r}\frac{G}{c}} \right) \\ & \quad = \upsilon \left( {\underline{{\frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } G}} + \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } cc^{\prime}G^{\prime} + \frac{{4\bar{k}r}}{{a^{2} }}\rho_{\infty } c^{2} G^{\prime\prime} - \underline{{\frac{{\bar{k}a^{2} }}{{r^{3} }}\rho_{\infty } G}} } \right) \\ \end{aligned}$$

After omitting underlined phrases and dividing by \(\frac{{4\bar{k}\upsilon \rho_{\infty } }}{r}\):

$$- \frac{{\bar{k}a^{2} }}{2\,\upsilon }f\,G^{\prime} = \frac{{r{}^{2}}}{{a^{2} }}cc^{\prime}G^{\prime} + \frac{{r{}^{2}}}{{a^{2} }}c^{2} G^{\prime\prime}$$

To derive energy equation, Eq. (17):

Consider a change in variable as: \(\frac{{T(\eta ) - T_{\infty } }}{{T_{\text{w}} - T_{\infty } }} = \theta (\eta )\) or \(\theta (\eta ) = \frac{{T(\eta ) - T_{\infty } }}{{\frac{{a\,q_{\text{w}} }}{2k}}}\). Then energy equation can be written as:

$$\rho \,u\frac{\partial \,\theta }{\partial \,r} + \rho \,w\frac{\partial \,\theta }{\partial \,z} = \frac{\mu }{\Pr }\frac{1}{r}\frac{\partial }{\partial \,r}\left( {r\frac{\partial \,\theta }{\partial \,r}} \right)$$

Using chain rule:

$$\begin{aligned} \frac{\partial \,\theta }{\partial \,r} = &\, \frac{\partial \,\theta }{\partial \,\eta }\frac{\partial \,\eta }{\partial \,r} = \frac{2r}{{a^{2} }}c\theta^{\prime},\quad \frac{\partial \,\theta }{\partial \,z} = 0 \\ r\frac{\partial \,\theta }{\partial \,r} = &\, \frac{{2r^{2} }}{{a^{2} }}c\theta^{\prime} \Rightarrow \frac{\partial }{\partial \,r}\left( {r\frac{\partial \,\theta }{\partial \,r}} \right) \\ = &\, \frac{4r}{{a^{2} }}c\theta^{\prime} + (c^{\prime}\theta^{\prime} + c\theta^{\prime\prime})\frac{{4r^{3} }}{{a^{4} }}c \Rightarrow \frac{1}{r}\left[ {\frac{\partial }{\partial \,r}\left( {r\frac{\partial \,\theta }{\partial \,r}} \right)} \right] \\ = &\, \frac{4}{{a^{2} }}c\theta^{\prime} + (c^{\prime}\theta^{\prime} + c\theta^{\prime\prime})\frac{{4r^{2} }}{{a^{4} }}c\mathop{\longrightarrow}\limits{{r^{2} = a^{2} \varGamma (\eta )}}\frac{1}{r}\left[ {\frac{\partial }{\partial \,r}\left( {r\frac{\partial \,\theta }{\partial \,r}} \right)} \right] \\ = &\, \frac{4}{{a^{2} }}c\theta^{\prime} + \frac{4\varGamma }{{a^{2} }}c(c^{\prime}\theta^{\prime} + c\theta^{\prime\prime}) \\ \end{aligned}$$

By substitution:

$$- \frac{{\bar{k}a^{2} }}{r}\rho_{\infty } f\frac{2r}{{a^{2} }}\frac{\rho }{{\rho_{\infty } }}\theta^{\prime} = \frac{\mu }{Pr}\frac{4}{{a^{2} }}\left( {c\theta^{\prime} + \varGamma \,cc^{\prime}\,\theta^{\prime} + \varGamma \,c^{2} \,\theta^{\prime\prime}} \right)$$

Divide by \(2\bar{k}\rho\) and since, \(1/Re = 2\nu /\bar{k}a^{2}\)

$$\frac{1}{Re \cdot Pr}\left( {c^{2} \varGamma \theta^{\prime\prime} + \varGamma \,cc^{\prime}\theta^{\prime} + c\theta^{\prime}} \right) + \,f\theta^{\prime} = 0$$

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rahimi, A.B., Mohammadiun, H. & Mohammadiun, M. Self-Similar Solution of Radial Stagnation Point Flow and Heat Transfer of a Viscous, Compressible Fluid Impinging on a Rotating Cylinder. Iran J Sci Technol Trans Mech Eng 43 (Suppl 1), 141–153 (2019). https://doi.org/10.1007/s40997-018-0145-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-018-0145-1

Keywords

  • Stagnation point flow
  • Constant angular velocity
  • Heat transfer
  • Compressibility factor
  • Constant wall temperature and heat flux