Skip to main content
Log in

Forward Kinematic Analysis of Parallel Mechanisms in Seven-Dimensional Kinematic Space by Considering Limitation of Passive Joints motion

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, a new and systematic algorithm is presented for the forward kinematic analysis of parallel mechanisms (PMs) by considering joint motion limitations. The proposed algorithm is based on Euler parameters, the so-called linear implicitization algorithm and interval analysis in seven-dimensional kinematic space. Interval arithmetic computations and solving system of nonlinear interval equations are performed by means of INTLAB and RealPaver software, respectively. The ranges of passive joints motion of PMs are given as input to the algorithm, and feasible solutions of the forward kinematic problem (FKP) are the output of the algorithm. The advantages of combining seven-dimensional kinematic space and interval analysis in the FKP of PM are twofold: eliminating the trigonometric expressions from equations and considering the ranges of passive joints motion. The main contribution of this paper can be regarded as the synergy of seven-dimensional kinematic space and interval analysis which is used to the end of refining the solutions of FKP of PMs by taking into account passive joints limitation. As case studies, the proposed algorithm is implemented and verified, namely the 3-RPR and 4-PUU PMs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agrawal SK, Desmier G, Li S (1995) Fabrication and analysis of a novel 3 DOF parallel wrist mechanism. J Mech Des 117:343

    Article  Google Scholar 

  • Albus J, Bostelman R, Dagalakis N (1993) The NIST robocrane. J Robot Syst 10:709–724

    Article  Google Scholar 

  • Arai T, Stoughton R, Homma K, Adachi H, Nakamura T, Nakashima K (1991) Development of a parallel link manipulator. In: Fifth international conference on advanced robotics, 1991. Robots in unstructured environments, 91 ICAR. IEEE, pp 839–844

  • Berti A, Merlet J-P, Carricato M (2013) Solving the direct geometrico-static problem of 3-3 cable-driven parallel robots by interval analysis: preliminary results. In: Cable-driven parallel robots. Springer, pp 251–268

  • Brandt G et al (1999) CRIGOS: a compact robot for image-guided orthopedic surgery. IEEE Trans Inf Technol Biomed 3:252–260

    Article  Google Scholar 

  • Brunnthaler K, Schröcker H-P, Husty M (2005) A new method for the synthesis of Bennett mechanisms. In: Proceedings of CK

  • Chablat D, Wenger P, Majou F, Merlet J-P (2004) An interval analysis based study for the design and the comparison of three-degrees-of-freedom parallel kinematic machines. Int J Robot Res 23:615–624

    Article  Google Scholar 

  • Craig JJ (2004) Introduction to robotics: mechanics and control. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Farzaneh Kaloorazi M, Tale Masouleh M, Caro S (2016) Collision-free workspace of parallel mechanisms based on an interval analysis approach. Robotica 35:1747–1760

    Article  Google Scholar 

  • Farzaneh Kaloorazi MH, Tale Masouleh M, Caro S (2016) Determining the maximal singularity-free circle or sphere of parallel mechanisms using interval analysis. Robotica 34:135–149

    Article  Google Scholar 

  • Gan D, Liao Q, Dai JS, Wei S, Seneviratne L (2009) Forward displacement analysis of the general 6–6 Stewart mechanism using Gröbner bases. Mech Mach Theory 44:1640–1647

    Article  MATH  Google Scholar 

  • Gosselin CM, Hamel J-F (1994) The agile eye: a high-performance three-degree-of-freedom camera-orienting device. In: Proceedings 1994 IEEE international conference on robotics and automation, 1994. IEEE, pp 781–786

  • Gosselin CM, Merlet J-P (1994) The direct kinematics of planar parallel manipulators: special architectures and number of solutions. Mech Mach Theory 29:1083–1097

    Article  Google Scholar 

  • Gosselin CM, St-Pierre É (1997) Development and experimentation of a fast 3-DOF camera-orienting device. Int J Robot Res 16:619–630

    Article  Google Scholar 

  • Gosselin C, Kong X, Foucault S, Bonev I (2004) A fully-decoupled 3-dof translational parallel mechanism. Parallel Kinemat Mach Res Pract 24:595–610

    Google Scholar 

  • Gosselin CM, Tale Masouleh M, Duchaine V, Richard P-L, Foucault S, Kong X (2007) Parallel mechanisms of the multipteron family: kinematic architectures and benchmarking. In: 2007 IEEE international conference on robotics and automation IEEE, pp 555–560

  • Gouttefarde M, Daney D, Merlet J-P (2011) Interval-analysis-based determination of the wrench-feasible workspace of parallel cable-driven robots. IEEE Trans Robot 27:1–13

    Article  MATH  Google Scholar 

  • Granvilliers L (2002) RealPaver user’s manual, 01st edn. IRIN University of Nantes, Nantes

    Google Scholar 

  • Granvilliers L, Benhamou F (2006) Algorithm 852: Realpaver: an interval solver using constraint satisfaction techniques. ACM Trans Math Softw (TOMS) 32:138–156

    Article  MathSciNet  MATH  Google Scholar 

  • Griffis M, Duffy J (1989) A forward displacement analysis of a class of Stewart platforms. J Robot Syst 6:703–720

    Article  Google Scholar 

  • Hofschuster W, Krämer WA (1997) Fast public domain interval library in ANSI-C. In: 15th IMACS world congress on scientific computation, modelling and applied mathematics. Berlin, pp 395–400

  • Huang T, Whitehouse DJ, Wang J (1998) The local dexterity optim architecture and design criteria of parallel machine tools. CIRP Ann Manuf Technol 47:346–350

    Article  Google Scholar 

  • Husain M, Waldron KJ (1994) Direct position kinematics of the 3-1-1-1 Stewart platforms. J Mech Des 116:1102

    Article  Google Scholar 

  • Husty ML (1996) An algorithm for solving the direct kinematics of general Stewart-Gough platforms. Mech Mach Theory 31:365–379

    Article  Google Scholar 

  • Husty ML (2006) Algebraic methods in mechanisms analysis and synthesis. Mach Des Res 31:37–48

    Google Scholar 

  • Husty ML (2010) Using Geogebra in elementary geometry. In: Sir Z (ed) The 30th Czech conference on geometry and graphics

  • Husty ML, Schröcker HP (2009) Algebraic geometry and kinematics. In: Emiris I, Sottile F, Theobald T (eds) Nonlinear computational geometry. The IMA volumes in mathematics and its applications, vol 151. Springer, New York, pp 85–107

    Chapter  Google Scholar 

  • Husty ML, Schröcker H-P (2013) Kinematics and algebraic geometry. In: 21st century kinematics. Springer, pp 85–123

  • Husty ML, Pfurner M, Schröcker H-P (2007a) A new and efficient algorithm for the inverse kinematics of a general serial 6R manipulator. Mech Mach Theory 42:66–81

    Article  MathSciNet  MATH  Google Scholar 

  • Husty ML, Pfurner M, Schröcker H-P, Brunnthaler K (2007b) Algebraic methods in mechanism analysis and synthesis. Robotica 25:661–675

    Article  Google Scholar 

  • Innocenti C (1995) Direct kinematics in analytical form of the 6-4 fully-parallel mechanism. J Mech Des 117:89

    Article  Google Scholar 

  • Innocenti C, Parenti-Castelli V (1993) Direct kinematics in analytical form of a general geometry 5-4 fully-parallel manipulator. In: Angeles J, Hommel G, Kovács P (eds) Computational kinematics. Solid mechanics and its applications, vol 28. Springer, Dordrecht, pp 141–152

    Chapter  Google Scholar 

  • Lim K (1997) Forward kinematics solution of Stewart platform using neural networks. Neurocomputing 16:333–349

    Article  Google Scholar 

  • Kearfott RB, Dawande M, Du K, Hu C (1994) Algorithm 737: INTLIB—a portable Fortran 77 interval standard-function library. ACM Trans Math Softw (TOMS) 20:447–459

    Article  MATH  Google Scholar 

  • Khalilpour SA, Loloei AZ, Taghirad HD, Tale Masouleh M (2013) Feasible kinematic sensitivity in cable robots based on interval analysis. In: Cable-driven parallel robots. Springer, pp 233–249

  • Knüppel O (1994) PROFIL/BIAS—a fast interval library. Computing 53:277–287

    Article  MathSciNet  MATH  Google Scholar 

  • Kong X, Gosselin CM (2005) Type synthesis of 5-DOF parallel manipulators based on screw theory. J Robot Syst 22:535–547

    Article  MATH  Google Scholar 

  • Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer, Berlin

    MATH  Google Scholar 

  • Lee T-Y, Shim J-K (2001) Forward kinematics of the general 6–6 Stewart platform using algebraic elimination. Mech Mach Theory 36:1073–1085

    Article  MATH  Google Scholar 

  • Li Y, Xu Q (2005) Design and analysis of a new 3-DOF compliant parallel positioning platform for nanomanipulation. In: 2005 5th IEEE conference on nanotechnology. IEEE, pp 861–864

  • Lin W, Griffis M, Duffy J (1992) Forward displacement analyses of the 4-4 Stewart platforms. J Mech Des 114:444

    Article  Google Scholar 

  • Liu X-J, Wang J, Gao F, Wang L-P (2001) On the design of 6-DOF parallel micro-motion manipulators. In: Proceedings 2001 IEEE/RSJ international conference on intelligent robots and systems 2001. IEEE, pp 343–348

  • Ma LS, Hao KR, Ding YS (2013) Forward kinematics of six-DOF parallel robot based on adaptive differential evolution. Appl Mech Mater 303:1674–1677

    Article  Google Scholar 

  • Merlet J-P (1996) Direct kinematics of planar parallel manipulators. In: 1996 Proceedings IEEE international conference on robotics and automation, 1996. IEEE, pp 3744–3749

  • Merlet J-P (2004) Solving the forward kinematics of a Gough-type parallel manipulator with interval analysis. Int J Robot Res 23:221–235

    Article  Google Scholar 

  • Merlet J-P (2006) Parallel robots. Springer, Berlin

    MATH  Google Scholar 

  • Moore RE, Cloud MJ, Kearfott RB (2009) Introduction to interval analysis. SIAM, Bangkok

    Book  MATH  Google Scholar 

  • Morell A, Tarokh M, Acosta L (2013) Solving the forward kinematics problem in parallel robots using Support Vector Regression. Eng Appl Artif Intell 26:1698–1706

    Article  Google Scholar 

  • Naderi D, Tale Masouleh M, Varshovi-Jaghargh P (2013) Forward kinematic investigation of three 4-DOF parallel robots with prismatic actuators performing 3T1R motion pattern in seven-dimensional kinematic space (Text in persian). Modares J Mech Eng 13:35–50

    Google Scholar 

  • Naderi D, Tale Masouleh M, Varshovi-Jaghargh P (2016) Gröbner basis and resultant method for the forward displacement of 3-DoF planar parallel manipulators in seven-dimensional kinematic space. Robotica 34:2610–2628

    Article  Google Scholar 

  • Nag A, Mohan S, Bandyopadhyay S (2017) Forward kinematic analysis of the 3-RPRS parallel manipulator. In: Wenger P, Flores P (eds) New trends in mechanism and machine science. Mechanisms and machine science, vol 43. Springer, Cham, p 103

    Chapter  Google Scholar 

  • Parikh PJ, Lam SS (2005) A hybrid strategy to solve the forward kinematics problem in parallel manipulators. IEEE Trans Robot 21:18–25

    Article  Google Scholar 

  • Pfurner M (2006) Analysis of spatial serial manipulators using kinematic mapping. Ph. D. Thesis, University Innsbruck

  • Richard P-L, Gosselin CM, Kong X (2007) Kinematic analysis and prototyping of a partially decoupled 4-DOF 3T1R parallel manipulator. J Mech Des 129:611

    Article  Google Scholar 

  • Rump SM (1999) INTLAB—interval laboratory. Springer, Berlin

    Book  MATH  Google Scholar 

  • Saafi H, Laribi MA, Arsicault M, Zeghloul S (2015) Forward kinematic model of a new spherical parallel manipulator used as a master device. In: Bai S, Ceccarelli M (eds) Recent advances in mechanism design for robotics. Mechanisms and machine science, vol 33. Springer, Cham, pp 399–406

    Google Scholar 

  • Siciliano B, Khatib O (2008) Springer handbook of robotics. Springer, Berlin

    Book  MATH  Google Scholar 

  • Stewart D (1965) A platform with six degrees of freedom. Proc Inst Mech Eng 180:371–386

    Article  Google Scholar 

  • Study E (1891) von den Bewegungen und Umlegungen. Math Ann 39:441–565

    Article  MathSciNet  MATH  Google Scholar 

  • Tale Masouleh M (2010) Kinematic analysis of five-DOF (3T2R) parallel mechanisms with identical limb structures. Université Laval

  • Tale Masouleh M, Husty M, Gosselin C (2010a) Forward kinematic problem of 5-PRUR parallel mechanisms using study parameters. In: Advances in robot kinematics: motion in man and machine. Springer, pp 211–221

  • Tale Masouleh M, Husty M, Gosselin C (2010b) A general methodology for the forward kinematic problem of symmetrical parallel mechanisms and application to 5-PRUR parallel mechanisms (3T2R). In: ASME 2010 international design engineering technical conferences and computers and information in engineering conference, American Society of Mechanical Engineers, pp 1279–1288

  • Tale Masouleh M, Gosselin C, Husty M, Walter DR (2011) Forward kinematic problem of 5-RPUR parallel mechanisms (3T2R) with identical limb structures. Mech Mach Theory 46:945–959

    Article  MATH  Google Scholar 

  • Varshovi-Jaghargh P, Naderi D, Tale Masouleh M (2012) Forward kinematic problem of two 4-RRUR with different geometric structures and one 4-RUU spatial parallel robots (Text in Persian). Modares J Mech Eng 12:105–119

    Google Scholar 

  • Varshovi-Jaghargh P, Naderi D, Tale Masouleh M (2014) Forward kinematic problem of three 4-DOF parallel mechanisms (4-PRUR1, 4-PRUR2 and 4-PUU) with identical limb structures performing 3T1R motion pattern. Sci Iran Trans B, Mech Eng 21:1671–1682

    Google Scholar 

  • Walster GW (1999) Closed Interval Systems. Sun Microsystems, Santa Clara

    Google Scholar 

  • Walter DR, Husty ML (2010) On implicitization of kinematic constraint equations. Mach Des Res 26:218–226

    Google Scholar 

  • Walter DR, Husty ML, Pfurner M (2008) The SNU 3-UPU parallel robot from a theoretical viewpoint. In: Proceedings of the second international workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp 1–8

  • Zhang CD, Song SM (1992) Forward kinematics of a class of parallel (Stewart) platforms with closed-form solutions. J Robot Syst 9:93–112

    Article  MATH  Google Scholar 

  • Zhou W, Chen W, Liu H, Li X (2015) A new forward kinematic algorithm for a general stewart platform. Mech Mach Theory 87:177–190

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Davood Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Varshovi-Jaghargh, P., Tale Masouleh, M. & Naderi, D. Forward Kinematic Analysis of Parallel Mechanisms in Seven-Dimensional Kinematic Space by Considering Limitation of Passive Joints motion. Iran J Sci Technol Trans Mech Eng 43, 315–329 (2019). https://doi.org/10.1007/s40997-017-0128-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-017-0128-7

Keywords

Navigation