Skip to main content
Log in

Thermo-Ecological Analysis of Irreversible Dual-Miller Cycle (DMC) Engine Based on the Ecological Coefficient of Performance (ECOP) Criterion

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

In this paper, an ecological-based numerical analysis and optimization have been carried out for an air-standard irreversible Dual-Miller cycle engine with late inlet valve closing version using the ecological coefficient of performance (ECOP) criterion which covers finite rate of heat transfer, heat leak and internal irreversibilities. A detailed computational analysis has been performed in order to examine the general and optimum performances of the cycle. The results obtained based on ECOP function are compared with a different ecological function and with the maximum power output conditions. The consequences of ECOP, ecological function and maximum power output conditions are acquired based on the compression ratio, cut-off ratio, pressure ratio, Miller cycle ratio, source temperature ratio and internal irreversibility parameter. The influences of these parameters on the optimum performances are examined in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Heat transfer area (m2)

\( C_{\text{P}} \) :

Specific heat at constant pressure (kW/kg K)

\( \dot{C}_{\text{W}} \) :

\( \dot{m}C_{\text{P}} \) (kW/K)

DC:

Diesel cycle

DDC:

Dual-Diesel cycle

DMC:

Dual-Miller cycle

\( \dot{E} \) :

Ecological performance function

ECOP:

Ecological coefficient of performance

\( I_{{\Delta S}} \) :

Internal irreversibility parameter

\( k \) :

Isentropic exponent

MC:

Miller cycle

\( \dot{m} \) :

Mass flow rate (kg/s)

\( N_{\text{T}} \) :

Total number of heat-transfer units

OC:

Otto cycle

\( P \) :

Pressure (kPa)

\( \dot{Q} \) :

Rate of heat transfer (kW)

\( r \) :

Compression ratio, \( r = v_{\text{1}} /v_{\text{2}} \)

\( r_{\text{M}} \) :

Miller cycle ratio, \( r_{\text{M}} = v_{\text{6}} /v_{\text{1}} \)

\( S \) :

Entropy (kJ/K)

\( T \) :

Temperature (K)

\( U \) :

Overall heat-transfer coefficient (kW/m2 K)

\( V \) :

Volume (m3)

\( \dot{W} \) :

Power output (kW)

\( \alpha \) :

Stroke ratio, \( \alpha = v_{\text{6}} /v_{\text{2}} \)

\( \beta \) :

Pressure ratio, \( \beta = T_{\text{3}} /T_{\text{2}} \)

\( \varepsilon \) :

Heat-exchanger effectiveness

\( \chi \) :

Allocation ratio \( \left( {N_{{\text{H1}}} + N_{{\text{H2}}} } \right) /N_{\text{T}} \)

\( \eta \) :

Thermal efficiency

\( \eta_{\text{C}} \) :

Isentropic efficiency of compression

\( \eta_{\text{E}} \) :

Isentropic efficiency of expansion

\( \rho \) :

Cut-off ratio, \( \rho = T_{4} /T_{3} \)

\( \tau \) :

Source temperature ratio\( \tau = T_{\text{H}} /T_{\text{L}} \)

g:

Generation

H:

High-temperature heat-source

L:

Low-temperature heat-source

MAX:

Maximum

MEF:

At maximum thermal efficiency condition

MP:

At maximum power output condition

W:

Working fluid

0:

Environment condition

*:

At maximum ECOP condition

—:

Non-dimensional

References

  • Al-Sarkhi A, Akash BA, Jaber JO (2002) Efficiency of Miller Engine at Maximum Power Density. Int Commun Heat Mass 29:1159–1167

    Article  Google Scholar 

  • Al-Sarkhi A, Jaber JO, Probert SD (2006) Efficiency of a Miller engine. Appl Energy 83:343–351

    Article  Google Scholar 

  • Al-Sarkhi A, Al-Hinti I, Abu-Nada E, Akash B (2007) Performance evaluation of irreversible Miller engine under various specific heat models. Int Commun Heat Mass 34:897–906

    Article  Google Scholar 

  • Angulo-Brown F (1991) An ecological optimization criterion for finite-time heat engines. J Appl Phys 69:7465

    Article  Google Scholar 

  • Chen L, Sun F, Wu C (2004) Optimal performance of an irreversible dual-cycle. Appl Energy 79:3–14

    Article  Google Scholar 

  • Chen L, Ge Y, Sun F, Wu C (2006) Effects of heat transfer, friction and variable specific heats of working fluid on performance of an irreversible dual cycle. Energy Convers Manage 47(18–19):3224–3234

    Article  Google Scholar 

  • Chen L, Ge Y, Sun F et al (2010) The performance of a Miller cycle with heat transfer, friction and variable specific heats of working fluid. Termotehnica 14(2):24–32

    Google Scholar 

  • Chen L, Ge Y, Sun F et al (2011) Finite time thermodynamic modeling and analysis for an irreversible Miller cycle. Int J Ambient Energy 32(2):87–94

    Article  Google Scholar 

  • Endo H, Tanaka K, Kakuhama Y (2001) Development of the lean burn Miller cycle gas engine. In: 5th Int Symp Diagn Model Combust Intern Combust Engines, July 1–4, 2001, Nagoya

  • Ge Y, Chen L, Sun F et al (2005a) Effects of heat transfer and friction on the performance of an irreversible air-standard Miller cycle. Int Commun Heat Mass Transf 32(8):1045–1056

    Article  Google Scholar 

  • Ge Y, Chen L, Sun F et al (2005b) Effects of heat transfer and variable specific heats of working fluid on performance of a Miller cycle. Int J Ambient Energy 26(4):203–214

    Article  Google Scholar 

  • Ge Y, Chen L, Sun F (2009) Finite time thermodynamic modeling and analysis for an irreversible dual cycle. Math Comput Model 1–2:101–108

    Article  MATH  MathSciNet  Google Scholar 

  • Ghdke PR, Suryawanshi JG (2014) Investigation of multi cylinder diesel engine to meet future Indian Emission Norms. Iran J Sci Technol Trans Mech Eng 38(M1+):239–252

    Google Scholar 

  • Gonca G (2016a) Thermodynamic analysis and performance maps for the irreversible Dual-Atkinson cycle engine (DACE) with considerations of temperature-dependent specific heats, heat transfer and friction losses. Energy Convers Manage 111:205–216

    Article  Google Scholar 

  • Gonca G (2016b) Performance analysis and optimization of Irreversible Dual-Atkinson Cycle Engine (DACE) with Heat Transfer Effects under maximum power and maximum power density conditions. Appl Math Model 40:6725–6736

    Article  MathSciNet  Google Scholar 

  • Gonca G, Kayadelen HK, Safa, A (2011) Comparison of diesel engine and Miller cycled diesel engine by using two zone combustion model. 1. In: INTNAM Symp, vol 17, pp 681–97

  • Gonca G, Sahin B (2014) Performance optimization of an air-standard irreversible Dual-Atkinson cycle engine based on the ecological coefficient of performance criterion. Sci World J 815787:1–10. doi:10.1155/2014/815787

    Article  Google Scholar 

  • Gonca G, Sahin B (2016a) The influences of the engine design and operating parameters on the performance of a turbocharged and steam injected diesel engine running with the Miller cycle. Appl Math Model 40:3764–3782

    Article  Google Scholar 

  • Gonca G, Sahin B (2016b) Thermo-Ecological Performance analyses and optimizations of irreversible gas cycle engines. Appl Therm Eng 105:566–576

    Article  Google Scholar 

  • Gonca G, Sahin B, Ust Y, Parlak A (2013a) A study on late intake valve closing miller cycled diesel engine. Arab J Sci Eng 38:383–393

    Article  Google Scholar 

  • Gonca G, Sahin B, Ust Y (2013b) Performance maps for an air-standard irreversible Dual-Miller cycle (DMC) with late inlet valve closing (LIVC) version. Energy 5:285–290

    Article  Google Scholar 

  • Gonca G, Sahin B, Parlak A, Ust Y, Ayhan V, Cesur I, Boru B (2014) The effects of steam injection on the performance and emission parameters of a Miller cycle diesel engine. Energy 78:266–275

    Article  Google Scholar 

  • Gonca G, Sahin B, Ust Y, Parlak A, Safa A (2015a) Comparison of steam injected diesel engine and Miller cycled diesel engine by using two zone combustion model. J Energy Inst 88:43–52

    Article  Google Scholar 

  • Gonca G, Sahin B, Parlak A, Ayhan V, Cesur I, Koksal S (2015b) Application of the Miller cycle and turbo charging into a diesel engine to improve performance and decrease NO emissions. Energy 93:795–800

    Article  Google Scholar 

  • Gonca G, Sahin B, Parlak A, Ust Y, Ayhan V, Cesur I, Boru B (2015c) Theoretical and experimental investigation of the Miller cycle diesel engine in terms of performance and emission parameters. Appl Energy 138:11–20

    Article  Google Scholar 

  • Gonca G, Sahin B, Ust Y (2015d) Investigation of heat transfer influences on performance of air-standard irreversible Dual-Miller cycle. J Thermophys Heat Transf 29:678–693

    Article  Google Scholar 

  • Gonca G, Sahin B, Ust Y, Parlak A (2015e) Comprehensive performance analyses and optimization of the irreversible thermodynamic cycle engines (TCE) under maximum power (MP) and maximum power density (MPD) conditions. Appl Therm Eng 85:9–20

    Article  Google Scholar 

  • Kesgin U (2005) Efficiency improvement and NOx emission reduction potentials of two-stage turbocharged Miller cycle for stationary natural gas engines. Int J Energy Res 29:189–216

    Article  Google Scholar 

  • Lin JC, Hou SS (2008) Performance analysis of an air-standard Miller cycle with considerations of heat loss as a percentage of fuel’s energy, friction and variable specific heats of working fluid. Int J Therm Sci 47:182–191

    Article  Google Scholar 

  • Lin J, Chen L, Wu C, Sun F (1999) Finite-time thermodynamic performance of a dual cycle. Int J Energy Res 23(9):765–772

    Article  Google Scholar 

  • Mansoury M, Jafarmadar S, Lashkarpour SM, Talei M (2015a) Effect of air jet at the various rate of fuel injection in a direct injection diesel engine. Iran J Sci Technol Trans Mech Eng 39(M1+):219–231

    Google Scholar 

  • Mansoury M, Jafarmadar S, Kousheshi N (2015b) Experimental study of the effects of air-injection, injection timing and cooled egr on the combustion, emissions and performance of a nature aspirated direct injection diesel engine. Iran J Sci Technol Trans Mech Eng 39(M1):147–152

    Google Scholar 

  • Mikalsen R, Wang YD, Roskilly AP (2009) A comparison of Miller and Otto cycle natural gas engines for small scale CHP applications. Appl Energy 86:922–927

    Article  Google Scholar 

  • Mughal HU, Bhutta MMA, Athar M, Shahid EM, Ehsan MS (2012) The alternative fuels for four stroke compression ignition engines: performance analysis. Iran J Sci Technol Trans Mech Eng 36(M2):155–164

    Google Scholar 

  • Sahin B, Ozsoysal OA, Sogut OS (2002a) A comparative performance analysis of endoreversible dual-cycle under maximum ecological function and maximum power conditions. Energy Int J 2:173–185

    Google Scholar 

  • Sahin B, Kesgin U, Kodal A, Vardar N (2002b) Performance optimization of a new combined power-cycle based on power-density analysis of the dual cycle. Energy Convers Manage 43(15):2019–2031

    Article  Google Scholar 

  • Senthil R, Silambarasan R (2015) Influence of injection timing and compression ratio on performance, emission and combustion characteristics of jatropha methyl ester operated di diesel engine. Iran J Sci Technol Trans Mech Eng 39(M1):61–76

    Google Scholar 

  • Shah AN, Yunshan G, Shah FH, Mughal HU, Naveed A (2015) Performance evaluation of continuously regenerating traps for controlling the carbonyl emissions from a turbocharged compression ignition engine. Iran J Sci Technol Trans Mech Eng 39(M1+):205–217

    Google Scholar 

  • Shirneshan AR, Almassi M, Ghobadian B, Najafi GH (2014) Investigating the effects of biodiesel from waste cooking oil and engine operating conditions on the diesel engine performance by response surface methodology. Iran J Sci Technol Trans Mech Eng 38(M2):289–301

    Google Scholar 

  • Sogut OS, Ust Y, Sahin B (2006) The effects of intercooling and regeneration on the thermo-ecological performance analysis of an irreversible-closed Brayton heat engine with variable-temperature thermal reservoirs. J Appl Phys D 39:4713–4721

    Article  Google Scholar 

  • Ust Y (2005) Ecological performance analysis and optimization of power generation systems. Ph.D. Thesis, Yildiz Technical University, Istanbul (in Turkish)

  • Ust Y, Sahin B (2007) Performance optimization of irreversible refrigerators based on a new thermo-ecological criterion. Int J Refrig 30:527–534

    Article  Google Scholar 

  • Ust Y, Sahin B, Sogut OS (2005a) Performance analysis and optimization of an irreversible Dual cycle based on ecological coefficient of performance (ECOP) criterion. Appl Energy 82:23–39

    Article  Google Scholar 

  • Ust Y, Sahin B, Kodal A (2005b) Ecological coefficient of performance (ECOP) optimization for generalized irreversible Carnot heat engines. J Energ Inst 78:145–151

    Article  Google Scholar 

  • Ust Y, Sahin B, Kodal A (2006a) Performance analysis of an irreversible Brayton heat engine based on ecological coefficient of performance criterion. Int J Therm Sci 45:94–101

    Article  Google Scholar 

  • Ust Y, Sogut OS, Sahin B, Durmayaz A (2006b) Ecological coefficient of performance (ECOP) optimization for an irreversible Brayton heat engine with variable-temperature thermal reservoirs. J Energ Inst 79:47–52

    Article  Google Scholar 

  • Ust Y, Sahin B, Kodal A, Akcay IH (2006c) Ecological coefficient of performance analysis and optimization of an irreversible regenerative Brayton heat engine. Appl Energy 83:558–572

    Article  Google Scholar 

  • Ust Y, Sahin B, Gonca G, Kayadelen HK (2013) Heat transfer effects on the performance of an air-standard irreversible dual cycle. Int J Veh Des 63(1):102–116. doi:10.1504/IJVD.2013.055496

    Article  Google Scholar 

  • Uzuneanu K, Panait T (2007) Study of the thermodynamic efficiency of a Miller supercharged cycle. Termotechnica 1:32–34

    Google Scholar 

  • Wang Y, Zeng S, Huang J (2005) Experimental investigation of applying Miller cycle to reduce NOx emission from diesel engine. Proc Int Mech Eng Part A J Power Energy 219:631–638

    Article  Google Scholar 

  • Wang Y, Lin L, Roskilly AP (2007) An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Appl Therm Eng 27:1779–1789

    Article  Google Scholar 

  • Wang Y, Lin L, Zeng S (2008) An analytic study of applying Miller cycle to reduce NOx emission from petrol engine. Appl Energy 85:463–474

    Article  Google Scholar 

  • Wu C, Puzinauskas PV, Tsai JS (2003) Performance analysis and optimization of a supercharged Miller cycle Otto engine. Appl Therm Eng 23:511–521

    Article  Google Scholar 

  • Zhao Y, Chen J (2007) Performance analysis of an irreversible Miller heat engine and its optimum criteria. Appl Therm Eng 27:2051–2058

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guven Gonca.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonca, G. Thermo-Ecological Analysis of Irreversible Dual-Miller Cycle (DMC) Engine Based on the Ecological Coefficient of Performance (ECOP) Criterion. Iran J Sci Technol Trans Mech Eng 41, 269–280 (2017). https://doi.org/10.1007/s40997-016-0060-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-016-0060-2

Keywords

Navigation