A Micromechanical Model for Effective Thermo-elastic Properties of Nanocomposites with Graded Properties of Interphase

Research Paper


In this study, a micromechanics-based analytical model is proposed to evaluate the effective thermo-elastic properties of polymer matrix nanocomposite materials. Accuracy, simplicity and efficiency are the main features of this micromechanical model. The constituents of representative volume element of nanocomposites are treated as three distinct phases, consisting of nanofiller, polymer matrix and interphase around the nanofiller. Young’s modulus and coefficient of thermal expansion of the interphase are continuously graded from those of the nanofiller to those of the polymer matrix. The effects of nanoparticle volume fraction, nanoparticle size, interphase thickness, nanofiller aspect ratio and number of layers in the interphase on the thermo-elastic properties of nanocomposites are studied. The comparison of results of the presented model with experimental data and other available micromechanical analysis demonstrates the validity of the proposed micromechanical model in the case of response of nanocomposites with graded properties of interphase.


Nanocomposite Micromechanics Graded interphase Thermo-elastic properties 


  1. Aghdam MM, Dezhsetan A (2005) Micromechanics based analysis of randomly distributed fiber reinforced composites using simplified unit cell model. Compos Struct 71:327–332CrossRefGoogle Scholar
  2. Aghdam MM, Smith DJ, Pavier MJ (2000) Finite element micromechanical modelling of yield and collapse behaviour of metal matrix composites. J Mech Phys Solids 48:499–528CrossRefMATHGoogle Scholar
  3. Ajori S, Ansari R, Mirnezhad M (2013) Mechanical properties of defective γ-graphyne using molecular dynamics simulations. Mater Sci Eng A 561:34–39CrossRefGoogle Scholar
  4. Ansari R, Malakpoura S, Faghihnasirib M, Ajori S (2013a) Structural and elastic properties of carbon nanotube containing Fe atoms using first principles. Super Microstruct 64:220–226CrossRefGoogle Scholar
  5. Ansari R, Rouhi H, Arash B (2013b) Vibrational analysis of double-walled carbon nanotubes based on the nonlocal Donnell shell theory via a new numerical approach. IJST Trans Mech Eng 37:91–105Google Scholar
  6. Ansari R, Rouhi S, Ajori S (2014) Elastic properties and large deformation of two-dimensional silicene nanosheets using molecular dynamics. Super Microstruct 65:64–70CrossRefGoogle Scholar
  7. Avella M, Bondioli F, Cannillo V, Errico ME, Ferrari AM, Focher B, Malinconico M, Manfredini T, Montorsi M (2004) Preparation, characterisation and computational study of poly (e-caprolactone) based nanocomposites. Mater Sci Technol 20:1340–1344CrossRefGoogle Scholar
  8. Baxter SC, Robinson CT (2011) Pseudo-percolation: critical volume fractions and mechanical percolation in polymer nanocomposites. Compos Sci Technol 71:1273–1279CrossRefGoogle Scholar
  9. Berriot J, Martin F, Montes H, Monnerie L, Sotta P (2003) Reinforcement of model filled elastomers: characterization of the cross-linking density at the filler–elastomer interface by 1H NMR measurements. Polymer 44:1437–1447CrossRefGoogle Scholar
  10. Boutaleb S, Zairi F, Mesbah A, Nait-Abdelaziz M, Gloaguen JM, Boukharouba T, Lefebvre JM (2009) Micromechanics-based modelling of stiffness and yield stress for silica/polymer nanocomposites. Int J Solids Struct 46:1716–1726CrossRefMATHGoogle Scholar
  11. Falahatgar SR, Salehi M, Aghdam MM (2009) Nonlinear viscoelastic response of unidirectional fiber reinforced composites in off-axis loading. J Reinf Plast Compos 28:1793–1812CrossRefGoogle Scholar
  12. Griebel M, Hamaekers J (2004) Molecular dynamics simulations of the elastic moduli of polymer–carbon nanotube composites. Comput Methods Appl Mech Eng 193:1773–1788MathSciNetCrossRefMATHGoogle Scholar
  13. Han Y, Elliott J (2007) Molecular dynamics simulations of the elastic properties of polymer/carbon nanotube composites. Comput Mater Sci 39:315–323CrossRefGoogle Scholar
  14. Huanga J, Rodrigue D (2014) The effect of carbon nanotube orientation and content on the mechanical properties of polypropylene based composites. Mater Des 55:653–663CrossRefGoogle Scholar
  15. Joshi UA, Sharma SC, Harsha SP (2012) Effect of carbon nanotube orientation on the mechanical properties of nanocomposites. Compos B 43:2063–2071CrossRefGoogle Scholar
  16. Kundalwal SI, Ray MC (2013) Effects of carbon nanotube waviness on the elastic properties of the fuzzy fiber reinforced composites. J Appl Mech 80(021010):1–13Google Scholar
  17. Li C, Chou TW (2009) Failure of carbon nanotube/polymer composites and the effect of nanotube waviness. Compos Part A 40:1580–1586CrossRefGoogle Scholar
  18. Liu H, Brinson LC (2007) Reinforcing efficiency of nanoparticles: a simple comparison for polymer nanocomposites. Compos Sci Technol 68:1502–1512CrossRefGoogle Scholar
  19. Mahmoodi MJ, Aghdam MM (2011) Damage analysis of fiber reinforced Ti-alloy subjected to multi-axial loading: a micromechanical approach. Mater Sci Eng A 528:7983–7990CrossRefGoogle Scholar
  20. Mortazavi B, Bardon J, Ahzi S (2013) Interphase effect on the elastic and thermal conductivity response of polymer nanocomposite materials: 3D finite element study. Comput Mater Sci 69:100–106CrossRefGoogle Scholar
  21. Odegard GM, Clancy TC, Gates TS (2005) Modeling of the mechanical properties of nanoparticle/polymer composites. Polymer 46:553–562CrossRefGoogle Scholar
  22. Ou Y, Yang F, Yu ZZ (1998) A new conception on the toughness of nylon 6/silica nanocomposite prepared via in situ polymerization. J Polym Sci B Polym Phys 36:789–795CrossRefGoogle Scholar
  23. Peng RD, Zhou HW, Wang HW, Mishnaevsky L Jr (2012) Modeling of nano-reinforced polymer composites: microstructure effect on Young’s modulus. Comput Mater Sci 60:19–31CrossRefGoogle Scholar
  24. Seidel GD, Lagoudas DC (2009) A micromechanics model for the electrical conductivity of nanotube-polymer nanocomposites. J Compos Mater 43:917–941CrossRefGoogle Scholar
  25. Smith JS, Bedrov D, Smith GD (2003) A molecular dynamics simulation study of nanoparticle interactions in a model polymer–nanoparticle composite. Compos Sci Technol 63:1599–1605CrossRefGoogle Scholar
  26. Snipes JS, Robinson CT, Baxter SC (2011) Effects of scale and interface on the three-dimensional micromechanics of polymer nanocomposites. J Compos Mater 45:2537–2546CrossRefGoogle Scholar
  27. Sobhani Aragh B, Nasrollah Barati AH, Hedayati H (2012) Eshelby–Mori–Tanaka approach for vibrational behavior of continuously graded carbon nanotube-reinforced cylindrical panels. Compos B 43:1943–1954CrossRefGoogle Scholar
  28. Tsai JL, Tzeng SH, Chiu YT (2010) Characterizing elastic properties of carbon nanotubes/polyimide nanocomposites using multi-scale simulation. Compos Part B 41:106–115CrossRefGoogle Scholar
  29. Wang ZD, Lu JJ, Li Y, Fu SY, Jiang SQ, Zhao XX (2005) Low temperature properties of PI/SiO2 nanocomposite films. Mater Sci Eng B 123:216–221CrossRefGoogle Scholar
  30. Wang HW, Zhou HW, Peng RD, Mishnaevsky L Jr (2011) Nanoreinforced polymer composites: 3D FEM modeling with effective interface concept. Compos Sci Technol 71:980–988CrossRefGoogle Scholar
  31. Wei CY, Shrivastava D, Choi K (2002) Thermal expansion and diffusion coefficients of carbon nanotube-polymer composites. Nano Lett 2:647–650CrossRefGoogle Scholar
  32. Weon JI, Sue HJ (2005) Effects of clay orientation and aspect ratio on mechanical behavior of nylon-6 nanocomposite. Polymer 46:6325–6334CrossRefGoogle Scholar
  33. Yazdchi K, Salehi M (2011) The effects of CNT waviness on interfacial stress transfer characteristics of CNT/polymer composites. Compos A 42:1301–1309CrossRefGoogle Scholar
  34. Zhang WX, Wanga TJ, Chen X (2010) Effect of surface/interface stress on the plastic deformation of nanoporous materials and nanocomposites. Int J Plast 26:957–975CrossRefMATHGoogle Scholar
  35. Zhu R, Pan E, Roy AK (2007) Molecular dynamics study of the stress–strain behavior of carbon-nanotube reinforced Epon 862 composites. Mater Sci Eng A 447:51–57CrossRefGoogle Scholar

Copyright information

© Shiraz University 2016

Authors and Affiliations

  • Mohammad Kazem Hassanzadeh-Aghdam
    • 1
  • Reza Ansari
    • 1
  1. 1.Department of Mechanical EngineeringUniversity of GuilanRashtIran

Personalised recommendations