Skip to main content

Advertisement

Log in

Evaluation of the Effects of Untreated and Treated Sugarcane Bagasse Fibers and RHA on the Physicomechanical Characteristics of Cementitious Composites

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

The utilization of agricultural residues from mills or plants, such as sugarcane bagasse (SB) and rice husk ash (RHA), may contribute to the sustainability of civil engineering and the agriculture industry. In the present paper, the effect of SB fiber treatment and RHA inclusion on the flow, physical, and mechanical properties of cement mortars was investigated. Cementitious mortar mixes were prepared using 0%, 3%, and 6% untreated, heat-treated, and NaOH-treated SB fibers, and the most appropriate treatment method was chosen accordingly. Then, RHA was incorporated as 10% replacement for cement. The test results indicated that using heat-treated SB fibers was beneficial, with improved mechanical and physical properties without compromising fluidity compared to other materials. As compared to reference mortar, the incorporation of 3% untreated, heat-treated, and NaOH-treated fibers increased the compressive strength by 9.6%, 14.1%, and 9.3%, and flexural strength by 18.8%, 23.6%, and 12.1%, respectively. In addition, the 10% RHA substitution increased the compressive strength of mortar mixes by 41.2%, whereas similar flexural strength value was obtained. The combined use of RHA and 3% heat-treated fiber resulted in the highest flexural strength of 7.13 MPa, while the highest compressive strength of 38 MPa was obtained in the mixes produced with 10% RHA without SB fiber. The results of this study demonstrate the viability of manufacturing SB fiber-reinforced cementitious composites with competitive properties and their effective use in the construction sector, which can contribute to environmental sustainability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  • Abdollahnejad Z, Mastali M, Luukkonen T, Kinnunen P, Illikainen M (2018) Fiber-reinforced one-part alkali-activated slag/ceramic binders. Ceram Int 44(8):8963–8976

    Article  CAS  Google Scholar 

  • Acharya SK, Mishra PP, Mehar SK (2009) The influence of fiber treatment on the performance of bagasse fiber-reinforced polymer composite. J Reinf Plast Compos 28(24):3027–3036

    Article  CAS  Google Scholar 

  • Adesanya DA, Raheem AA (2009a) A study of the workability and compressive strength characteristics of corn cob ash blended cement concrete. Constr Buildi Mater 23(1):311–317

    Article  Google Scholar 

  • Adesanya DA, Raheem AA (2009b) Development of corn cob ash blended cement. Constr Build Mater 23(1):347–352

    Article  Google Scholar 

  • Akturk B, Abolfathi M, Ulukaya S, Kizilkanat AB, Hooper TJN, Gu L, Yang E-H, Unluer C (2022) Hydration kinetics and performance of sodium carbonate-activated slag-based systems containing reactive MgO and metakaolin under carbonation. Cement Concrete Compos 32:104617

    Article  Google Scholar 

  • Amin MN, Murtaza T, Shahzada K, Khan K, Adil M (2019) Pozzolanic potential and mechanical performance of wheat straw ash incorporated sustainable concrete. Sustainability 11(2):519

    Article  CAS  Google Scholar 

  • Antiohos SK, Papadakis VG, Tsimas S (2014) Rice husk ash (RHA) effectiveness in cement and concrete as a function of reactive silica and fineness. Cem Concr Res 61–62:20–27. https://doi.org/10.1016/j.cemconres.2014.04.001

    Article  CAS  Google Scholar 

  • Ardanuy M, Claramunt J, Toledo Filho RD (2015) Cellulosic fiber reinforced cement-based composites: a review of recent research. Constr Build Mater 79:115–128

    Article  Google Scholar 

  • Bheel N, Ibrahim MHW, Adesina A, Kennedy C, Shar IA (2021) Mechanical performance of concrete incorporating wheat straw ash as partial replacement of cement. J Build Pathol Rehab 6:1–7

    Google Scholar 

  • Bilba K, Arsene M-A (2008) Silane treatment of bagasse fiber for reinforcement of cementitious composites. Compos A Appl Sci Manuf 39(9):1488–1495

    Article  Google Scholar 

  • Bilba K, Rodier L, Onésippe C, Arsène MA (2016) Thermal and mechanical behaviors of cementitious composites reinforced with bagasse. Key Eng Mater 668:330–340

    Article  Google Scholar 

  • Binici H, Aksogan O, Cagatay IH, Tokyay M, Emsen E (2007) The effect of particle size distribution on the properties of blended cements incorporating GGBFS and natural pozzolan (NP). Powder Technol 177(3):140–147

    Article  CAS  Google Scholar 

  • Channa SH, Mangi SA, Bheel N, Soomro FA, Khahro SH (2022) Short-term analysis on the combined use of sugarcane bagasse ash and rice husk ash as supplementary cementitious material in concrete production. Environ Sci Pollut Res 29(3):3555–3564

    Article  CAS  Google Scholar 

  • Dai Y, Sun Q, Wang W, Lu L, Liu M, Li J, Yang S, Sun Y, Zhang K, Xu J (2018) Utilizations of agricultural waste as adsorbent for the removal of contaminants: a review. Chemosphere 211:235–253

    Article  ADS  CAS  PubMed  Google Scholar 

  • Danish A, Ozbakkaloglu T, Mosaberpanah MA, Salim MU, Bayram M, Yeon JH, Jafar K (2022) Sustainability benefits and commercialization challenges and strategies of geopolymer concrete: a review. J Build Eng 22:105005

    Article  Google Scholar 

  • Deja J, Uliasz-Bochenczyk A, Mokrzycki E (2010) CO2 emissions from Polish cement industry. Int J Greenhouse Gas Control 4(4):583–588

    Article  CAS  Google Scholar 

  • Devadiga DG, Bhat KS, Mahesha GT (2020) Sugarcane bagasse fiber reinforced composites: recent advances and applications. Cogent Eng 7(1):1823159

    Article  Google Scholar 

  • Dos Santos AC, Cardoso FG, da Silva RJ, de Fátima Gorgulho H, Panzera TH (2022) Modification of short sugarcane bagasse fibres for application in cementitious composites: a statistical approach to mechanical and physical properties. Constr Build Mater 353:129072

    Article  Google Scholar 

  • Ech-chebab A, Ejbouh A, Galai M, Hassi S, Belhaj T, Touhami ME (2022) The individual and combined effect of olive stone biomass ash with coal fly ash on the durability of water treatment tank concrete exposed to ferric chloride. Chem Afr 1–18

  • Gil-Carrera L, Browne JD, Kilgallon I, Murphy JD (2019) Feasibility study of an off-grid biomethane mobile solution for agri-waste. Appl Energy 239:471–481

    Article  ADS  Google Scholar 

  • Gouzevitch M (2009) Aux sources de la thermodynamique ou la loi de Prony/Betancourt. Quad D’història De L’enginyeria 10:119–147

    Google Scholar 

  • Gupta CK, Sachan AK, Kumar R (2022) Experimental study on microstructural and mechanical behaviour of self compacting concrete using agricultural waste. Iran J Sci Technol Trans Civ Eng. https://doi.org/10.1007/s40996-022-00980-0

    Article  Google Scholar 

  • Hajiha H, Sain M (2015) The use of sugarcane bagasse fibres as reinforcements in composites. Biofiber reinforcements in composite materials. Elsevier, New Jersey, pp 525–549

    Chapter  Google Scholar 

  • Hernández-Olivares F, Medina-Alvarado RE, Burneo-Valdivieso XE, Zúñiga-Suárez AR (2020) Short sugarcane bagasse fibers cementitious composites for building construction. Constr Build Mater 247:118451

    Article  Google Scholar 

  • Jamil M, Kaish A, Raman SN, Zain MFM (2013) Pozzolanic contribution of rice husk ash in cementitious system. Constr Build Mater 47:588–593

    Article  Google Scholar 

  • Jaturapitakkul C, Cheerarot R (2003) Development of bottom ash as pozzolanic material. J Mater Civil Eng 15(1):48–53

    Article  CAS  Google Scholar 

  • Jeong J-Y, Jang S-Y, Choi Y-C, Jung S-H, Kim S-I (2015) Effects of replacement ratio and fineness of GGBFS on the hydration and pozzolanic reaction of high-strength high-volume GGBFS blended cement pastes. J Korea Concr Inst 27(2):115–125

    Article  Google Scholar 

  • Jhatial AA, Mohamad N, Mo KH, Sohu S (2020) Incorporation of palm oil fuel ash and egg shell powder as supplementary cementitious materials in sustainable foamed concrete. Tehnički Vjesnik 27(5):1394–1402

    Google Scholar 

  • Jittin V, Minnu SN, Bahurudeen A (2021) Potential of sugarcane bagasse ash as supplementary cementitious material and comparison with currently used rice husk ash. Constr Build Mater 273:121679

    Article  CAS  Google Scholar 

  • Jongpradist P, Homtragoon W, Sukkarak R, Kongkitkul W, Jamsawang P (2018) Efficiency of rice husk ash as cementitious material in high-strength cement-admixed clay. Adv Civ Eng 1:2018

    Google Scholar 

  • Jorgenson AK (2006) Global warming and the neglected greenhouse gas: a cross-national study of the social causes of methane emissions intensity, 1995. Soc Forces 84(3):1779–1798

    Article  Google Scholar 

  • Joshaghani A, Moeini MA (2018) Evaluating the effects of sugarcane-bagasse ash and rice-husk ash on the mechanical and durability properties of mortar. J Mater Civ Eng 30(7):04018144

    Article  Google Scholar 

  • Kannan V, Ganesan K (2014) Chloride and chemical resistance of self compacting concrete containing rice husk ash and metakaolin. Constr Build Mater 51:225–234

    Article  Google Scholar 

  • Kari B, Perrin B, Foures JC (1991) Perméabilité à la vapeur d’eau de matériaux de construction: calcul numérique. Mater Struct 24(3):227–233

    Article  CAS  Google Scholar 

  • Kaya M, Köksal F, Nodehi M, Bayram M, Gencel O, Ozbakkaloglu T (2022) The effect of sodium and magnesium sulfate on physico-mechanical and microstructural properties of kaolin and ceramic powder-based geopolymer mortar. Sustainability 14(20):13496

    Article  CAS  Google Scholar 

  • Khoo RZ, Chow WS, Ismail H (2018) Sugarcane bagasse fiber and its cellulose nanocrystals for polymer reinforcement and heavy metal adsorbent: a review. Cellulose 25(8):4303–4330

    Article  CAS  Google Scholar 

  • Khorami M, Sobhani J (2013) An experimental study on the flexural performance of agro-waste cement composite boards. Int J Civil Eng 11(4):207–216

    Google Scholar 

  • Kim J-K, Han SH, Song YC (2002) Effect of temperature and aging on the mechanical properties of concrete: Part I. Experimental results. Cem Concr Res 32(7):1087–1094

    Article  CAS  Google Scholar 

  • Kumar A, Kumar V, Singh B (2021) Cellulosic and hemicellulosic fractions of sugarcane bagasse: Potential, challenges and future perspective. Int J Biol Macromol 169:564–582

    Article  PubMed  Google Scholar 

  • Laksono AD, Faisyal M, Kurniawati DM, Awali J, Ramadhan G, Rozikin MN (2021) Improved mechanical properties with the soaking time of NaOH in composites made from sugarcane bagasse fibers for future windmill blades material. IOP Conf Ser: Mater Sci Eng 1034(1):012136

    Article  CAS  Google Scholar 

  • Loh YR, Sujan D, Rahman ME, Das CA (2013) Sugarcane bagasse—The future composite material: a literature review. Resour Conserv Recycl 75:14–22

    Article  Google Scholar 

  • Mahmud MA, Anannya FR (2021) Sugarcane bagasse-A source of cellulosic fiber for diverse applications. Heliyon 7(8):e07771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mohr BJ, Nanko H, Kurtis KE (2005) Durability of kraft pulp fiber–cement composites to wet/dry cycling. Cem Concr Compos 27(4):435–448

    Article  CAS  Google Scholar 

  • Mounika G, Baskar R, Rama SK, J. (2022) Rice husk ash as a potential supplementary cementitious material in concrete solution towards sustainable construction. Innovat Infrast Solut 7(1):1–14

    Google Scholar 

  • Mukharjee BB, Patra RK (2022) Effect of coarse recycled aggregate and rice husk ash on concrete: a factorial design approach. Iran J Sci Technol Trans Civ Eng 9:1–17

    Google Scholar 

  • Muthadhi A, Banupriya S (2022) Production of self-compacting concrete with fly ash using bagasse ash as fine aggregate. Iran J Sci Technol Trans Civ Eng 46(3):2187–2200. https://doi.org/10.1007/s40996-021-00719-3

    Article  Google Scholar 

  • Nedeljković M, Luković M, van Breugel K, Hordijk D, Ye G (2018) Development and application of an environmentally friendly ductile alkali-activated composite. J Clean Prod 180:524–538

    Article  Google Scholar 

  • Omur T, Kabay N, Miyan N, Özkan H, Özkan Ç (2022a) The effect of alkaline activators and sand ratio on the physico-mechanical properties of blast furnace slag based mortars. J Build Eng 58:104998

    Article  Google Scholar 

  • Omur T, Miyan N, Kabay N, Birol B, Oktay D (2022) Characterization of ferrochrome ash and blast furnace slag based alkali-activated paste and mortar. Construct Build Mater 363:129805

    Article  Google Scholar 

  • Onésippe C, Passe-Coutrin N, Toro F, Delvasto S, Bilba K, Arsène M-A (2010) Sugar cane bagasse fibres reinforced cement composites: thermal considerations. Compos A Appl Sci Manuf 41(4):549–556

    Article  Google Scholar 

  • Qing YE, Zenan Z, Li S, Rongshen C (2006) A comparative study on the pozzolanic activity between nano-SiO2 and silica fume. J Wuhan Univ Technol-Mater Sci Ed 21:153–157

    Article  Google Scholar 

  • Ribeiro B, Yamamoto T, Yamashiki Y (2020a) A study on the reduction in hydration heat and thermal strain of concrete with addition of sugarcane bagasse fiber. Materials 13(13):3005

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Ribeiro B, Yamashiki Y, Yamamoto T (2020b) A study on mechanical properties of mortar with sugarcane bagasse fiber and bagasse ash. J Mater Cycles Waste Manage 22(6):1844–1851

    Article  CAS  Google Scholar 

  • Saand A, Ali T, Keerio MA, Bangwar DK (2019) Experimental study on the use of rice husk ash as partial cement replacement in aerated concrete. Eng Technol Appl Sci Res 9(4):4534–4537

    Article  Google Scholar 

  • Safiuddin M, Abdus Salam M, Jumaat MZ (2011) Utilization of palm oil fuel ash in concrete: a review. J Civil Eng Manag 17(2):234–247

    Article  Google Scholar 

  • Sarir M, Khan R, Alam M, Khan MT, Imran W (2022) Performance evaluation of asphalt concrete mixtures using bagasse ash as filler. Iran J Sci Technol Trans Civ Eng 46(2):1553–1570. https://doi.org/10.1007/s40996-021-00641-8

    Article  Google Scholar 

  • Shannag MJ (2000) High strength concrete containing natural pozzolan and silica fume. Cem Concr Compos 22(6):399–406

    Article  CAS  Google Scholar 

  • Syal M, Hastak M, Mullens M, Sweaney A (2006) United States-India collaborative research directions in urban housing and supporting infrastructure. J Archit Eng 12(4):163–167

    Article  Google Scholar 

  • Talavera-Pech WA, Montiel-Rodríguez D, Paat-Estrella J, de Los A, López-Alcántara R, Pérez-Quiroz JT, Pérez-López T (2021) Improvement in the carbonation resistance of construction mortar with cane bagasse fiber added. Materials 14(8):2066

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Tangpagasit J, Cheerarot R, Jaturapitakkul C, Kiattikomol K (2005) Packing effect and pozzolanic reaction of fly ash in mortar. Cem Concr Res 35(6):1145–1151

    Article  CAS  Google Scholar 

  • Tantawy MA, El-Roudi AM, Abdalla EM, Abdelzaher MA (2012) Evaluation of the pozzolanic activity of sewage sludge ash. Int Sch Res Notices 2012

  • Targan Ş, Olgun A, Erdogan Y, Sevinc V (2003) Influence of natural pozzolan, colemanite ore waste, bottom ash, and fly ash on the properties of Portland cement. Cem Concr Res 33(8):1175–1182

    Article  CAS  Google Scholar 

  • Vilay V, Mariatti M, Taib RM, Todo M (2008) Effect of fiber surface treatment and fiber loading on the properties of bagasse fiber–reinforced unsaturated polyester composites. Compos Sci Technol 68(3–4):631–638

    Article  CAS  Google Scholar 

  • Wei J, Meyer C (2014) Improving degradation resistance of sisal fiber in concrete through fiber surface treatment. Appl Surf Sci 289:511–523

    Article  ADS  CAS  Google Scholar 

  • World Population Review (2022) World Population. https://worldpopulationreview.com/.

  • Worldometer (2022) Real time world statistics. https://www.worldometers.info/.

  • Zhai J, Burke IT, Stewart DI (2021) Beneficial management of biomass combustion ashes. Renew Sustain Energy Rev 151:111555

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The experimental studies were conducted at Construction Materials Laboratory of Yildiz Technical University. The first author would like to thank Yildiz Technical University Erasmus+ Service for their support throughout the Erasmus mobility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tarik Omur.

Ethics declarations

Conflict of interest

The authors declare that they have no potential conflict of interest related to this manuscript.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Datchossa, A.T., Doko, V.K., Kabay, N. et al. Evaluation of the Effects of Untreated and Treated Sugarcane Bagasse Fibers and RHA on the Physicomechanical Characteristics of Cementitious Composites. Iran J Sci Technol Trans Civ Eng 48, 25–40 (2024). https://doi.org/10.1007/s40996-023-01104-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-023-01104-y

Keywords

Navigation