Skip to main content
Log in

Finite Element Analysis of Orthotropic Thin Plates Using Analytical Solution

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Despite the high importance of orthotropic bending plate, up to now, only a few studies have been performed based on the analytical solution for analysis of these structures. In this paper, an efficient element is proposed by utilizing the hybrid-Trefftz method to analyze structures. The proposed quadrilateral element (QHT-OR) has four nodes and twelve degrees of freedom. Moreover, two independent displacement fields are defined for inner and boundaries of element. The internal field is achieved by solving the governing equation of orthotropic plates. Furthermore, the boundary field is related to the nodal degrees of freedom by using interpolation functions. It should be mentioned that the interpolation functions of two-node beam elements are applied for boundary field. The responses obtained by using numerical tests show the high accuracy of the QHT-OR element even for coarse meshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Albuquerque E, Sollero P, Venturini W, Aliabadi M (2006) Boundary element analysis of anisotropic Kirchhoff plates. Int J Solids Struct 43:4029–4046

    Article  MATH  Google Scholar 

  • An C, Gu J, Su J (2016) Exact solution of bending problem of clamped orthotropic rectangular thin plates. J Braz Soc Mech Sci Eng 38:601–607

    Article  Google Scholar 

  • Bao G, Jiang W, Roberts J (1997) Analytic and finite element solutions for bending and buckling of orthotropic rectangular plates. Int J Solids Struct 34:1797–1822

    Article  MATH  Google Scholar 

  • Bhaskar K, Kaushik B (2004) Simple and exact series solutions for flexure of orthotropic rectangular plates with any combination of clamped and simply supported edges. Compos Struct 63:63–68

    Article  Google Scholar 

  • Choo YS, Choi N, Lee BC (2010) A new hybrid-Trefftz triangular and quadrilateral plate elements. Appl Math Model 34:14–23

    Article  MathSciNet  MATH  Google Scholar 

  • Dong C, Lo S, Cheung Y, Lee K (2004) Anisotropic thin plate bending problems by Trefftz boundary collocation method. Eng Anal Boundary Elem 28:1017–1024

    Article  MATH  Google Scholar 

  • dos Reis A, Lima Albuquerque É, Luiz Torsani F, Palermo L Jr, Sollero P (2011) Computation of moments and stresses in laminated composite plates by the boundary element method. Eng Anal Boundary Elem 35:105–113

    Article  MATH  Google Scholar 

  • dos Reis A, Lima Albuquerque É, Palermo Júnior L (2013) The boundary element method applied to orthotropic shear deformable plates. Eng Anal Boundary Elem 37:738–746

    Article  MathSciNet  MATH  Google Scholar 

  • Herrera I (1984) Boundary methods: an algebraic theory. Pitman Advanced Pub. Program, New York

    MATH  Google Scholar 

  • Jirousek J, Guex L (1986) The hybrid-Trefftz finite element model and its application to plate bending. Int J Numer Methods Eng 23:651–693

    Article  MathSciNet  MATH  Google Scholar 

  • Jirousek J, Leon N (1977) A powerful finite element for plate bending. Comput Methods Appl Mech Eng 12:77–96

    Article  MathSciNet  MATH  Google Scholar 

  • Jirousek J, N’Diaye M (1990) Solution of orthotropic plates based on p-extension of the hybrid-Trefftz finite element model. Comput Struct 34:51–62

    Article  MATH  Google Scholar 

  • Mbakogu F, Pavlović M (2000) Bending of clamped orthotropic rectangular plates: a variational symbolic solution. Comput Struct 77:117–128

    Article  Google Scholar 

  • Petrolito J (1996) Triangular thick plate elements based on a hybrid-Trefftz approach. Comput Struct 60:883–894

    Article  MATH  Google Scholar 

  • Petrolito J (2011) Analysis of orthotropic thick plates using hybrid-Trefftz elements. In: Australian conference of the mechanics of structures and materials, Melbourne, pp 105–109

  • Petrolito J (2014) Vibration and stability analysis of thick orthotropic plates using hybrid-Trefftz elements. Appl Math Model 38:5858–5869

    Article  MathSciNet  MATH  Google Scholar 

  • Qin Q-H (2005) Trefftz finite element method and its applications. Appl Mech Rev 58:316–337

    Article  Google Scholar 

  • Reddy JN (2004) Mechanics of laminated composite plates and shells: theory and analysis. CRC Press, Boca Raton

    Book  MATH  Google Scholar 

  • Rezaiee-Pajand M, Karkon M (2012) Two efficient hybrid-Trefftz elements for plate bending analysis. Latin Am J Solids Struct 9:43–67

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand M, Karkon M (2013) An effective membrane element based on analytical solution. Euro J Mech A/Solids 39:268–279

    Article  MathSciNet  MATH  Google Scholar 

  • Rezaiee-Pajand M, Karkon M (2014) Two higher order hybrid-Trefftz elements for thin plate bending analysis. Finite Elem Anal Des 85:73–86

    Article  MATH  Google Scholar 

  • Rezaiee-Pajand M, Yaghoobi M, Karkon M (2012) Hybrid Trefftz formulation for thin plate analysis. Int J Comput Methods 9(04):1250053. https://doi.org/10.1142/S0219876212500533

    Article  MathSciNet  MATH  Google Scholar 

  • Shi G, Bezine G (1988) A general boundary integral formulation for the anisotropic plate bending problems. J Compos Mater 22:694–716

    Article  Google Scholar 

  • Shimpi R, Patel H (2006) A two variable refined plate theory for orthotropic plate analysis. Int J Solids Struct 43:6783–6799

    Article  MATH  Google Scholar 

  • Sladek J, Sladek V, Zhang C, Krivacek J, Wen P (2006) Analysis of orthotropic thick plates by meshless local Petrov–Galerkin (MLPG) method. Int J Numer Methods Eng 67:1830–1850

    Article  MathSciNet  MATH  Google Scholar 

  • Thai H-T, Kim S-E (2012) Analytical solution of a two variable refined plate theory for bending analysis of orthotropic Levy-type plates. Int J Mech Sci 54:269–276

    Article  Google Scholar 

  • Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-Hill, New York

    MATH  Google Scholar 

  • Timoshenko S, Woinowsky-Krieger S, Woinowsky-Krieger S (1959) Theory of plates and shells, vol 2. McGraw-Hill, New York

    MATH  Google Scholar 

  • Ugural A (1999) Stresses in plates and shells. McGraw-Hill, New York

    Google Scholar 

  • Wang J, Huang M (1991) Boundary element method for orthotropic thick plates. Acta Mech Sin 7:258–266

    Article  Google Scholar 

  • Wang J, Schweizerhof K (1996) Fundamental solutions and boundary integral equations of moderately thick symmetrically laminated anisotropic plates. Commun Numer Methods Eng 12:383–394

    Article  MathSciNet  MATH  Google Scholar 

  • Wang C, Wang X, Zhang X, Hu P (2017) Assumed stress quasi-conforming technique for static and free vibration analysis of Reissner-Mindlin plates. Int J Numer Methods Eng 112(4):303–337

    Article  MathSciNet  Google Scholar 

  • Wilt T, Saleeb A, Chang T (1990) A mixed element for laminated plates and shells. Comput Struct 37:597–611

    Article  Google Scholar 

  • Wünsche M, García-Sánchez F, Sáez A (2012) Analysis of anisotropic Kirchhoff plates using a novel hypersingular BEM. Comput Mech 49:629–641

    Article  MathSciNet  MATH  Google Scholar 

  • Zhang Y, Kim K (2004) Two simple and efficient displacement-based quadrilateral elements for the analysis of composite laminated plates. Int J Numer Methods Eng 61:1771–1796

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Karkon.

Appendix: The Interpolation Matrix of the Boundary Displacement Field

Appendix: The Interpolation Matrix of the Boundary Displacement Field

The entries of the interpolation matrix of the boundary displacement field (45) have the coming appearance:

$$\left\{ \begin{aligned} {\tilde{w}} \hfill \\ \tilde{\theta }_{x} \hfill \\ \tilde{\theta }_{y} \hfill \\ \end{aligned} \right\} = \left[ {\begin{array}{*{20}c} {\begin{array}{*{20}c} {N_{11} } & {\begin{array}{*{20}c} {N_{12} } & {N_{13} } & {N_{14} } \\ \end{array} } & {\begin{array}{*{20}c} {N_{15} } & {N_{16} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {N_{21} } & {\begin{array}{*{20}c} {N_{22} } & {N_{23} } & {N_{24} } \\ \end{array} } & {\begin{array}{*{20}c} {N_{25} } & {N_{26} } \\ \end{array} } \\ \end{array} } \\ {\begin{array}{*{20}c} {N_{31} } & {\begin{array}{*{20}c} {N_{32} } & {N_{33} } & {N_{34} } \\ \end{array} } & {\begin{array}{*{20}c} {N_{35} } & {N_{36} } \\ \end{array} } \\ \end{array} } \\ \end{array} } \right]\left\{ \begin{aligned} \tilde{w}_{i} \hfill \\ \tilde{\theta }_{xi} \hfill \\ \tilde{\theta }_{yi} \hfill \\ \tilde{w}_{j} \hfill \\ \tilde{\theta }_{xj} \hfill \\ \tilde{\theta }_{yj} \hfill \\ \end{aligned} \right\}$$
$$\begin{aligned} N_{11} & = \frac{1}{4}\left( {2 - 3s + s^{3} } \right) \\ N_{12} & = \frac{{y_{ji} }}{8}\left( {1 - s - s^{2} + s^{3} } \right) \\ N_{13} & = \frac{{ - x_{ji} }}{8}\left( {1 - s - s^{2} + s^{3} } \right) \\ N_{14} & = \frac{1}{4}\left( {2 + 3s - s^{3} } \right) \\ N_{15} & = \frac{{y_{ji} }}{8}\left( { - 1 - s + s^{2} + s^{3} } \right) \\ N_{16} & = \frac{{ - x_{ji} }}{8}\left( { - 1 - s + s^{2} + s^{3} } \right) \\ N_{21} & = \frac{{3y_{ji} }}{{2l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{22} & = \frac{1}{{4l_{ji}^{2} }}\left( { - 1 + s} \right)\left( { - 2x_{ji}^{2} + \left( {1 + 3s} \right)y_{ji}^{2} } \right) \\ N_{23} & = \frac{{ - 3x_{ji} y_{ji} }}{{4l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{24} & = \frac{{ - 3y_{ji} }}{{2l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{25} & = \frac{1}{{4l_{ji}^{2} }}\left( {1 + s} \right)\left( {2x_{ji}^{2} + \left( { - 1 + 3s} \right)y_{ji}^{2} } \right) \\ N_{26} & = \frac{{ - 3x_{ji} y_{ji} }}{{4l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{31} & = \frac{{ - 3x_{ji} }}{{2l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{32} & = \frac{{ - 3x_{ji} y_{ji} }}{{4l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{33} & = \frac{1}{{4l_{ji}^{2} }}\left( { - 1 + s} \right)\left( { - 2y_{ji}^{2} + \left( {1 + 3s} \right)x_{ji}^{2} } \right) \\ N_{34} & = \frac{{3x_{ji} }}{{2l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{35} & = \frac{{ - 3x_{ji} y_{ji} }}{{4l_{ji}^{2} }}\left( { - 1 + s^{2} } \right) \\ N_{36} & = \frac{1}{{4l_{ji}^{2} }}\left( {1 + s} \right)\left( {2y_{ji}^{2} + \left( { - 1 + 3s} \right)x_{ji}^{2} } \right) \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karkon, M., Rezaiee-Pajand, M. Finite Element Analysis of Orthotropic Thin Plates Using Analytical Solution. Iran J Sci Technol Trans Civ Eng 43, 125–135 (2019). https://doi.org/10.1007/s40996-018-0128-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-018-0128-x

Keywords

Navigation