Long-Term Macro-Scale Assessment of Wave Power of Black Sea by an Optimized Numerical Model

Abstract

Sea wave power is one of the cleanest renewable energy resources with the potential to mitigate the challenges of global warming and climate change while contributing to the ever-increasing energy demand. Studies show that wave energy production is closely related to wave height and wave period. Accordingly, the potential assessment and characterization of wave energy is vital for planning, production and utilization of wave energy. This study investigated the monthly, seasonal and annual wave energy characteristics of the Black Sea using the third-generation, state-of-the-art numerical model, MIKE 21 SW, based on 37 years of wind data obtained from the European Centre for Medium-Range Weather Forecasts. To set up the model and represent actual field conditions, computational mesh of the study domain was optimized and then the model was calibrated using data observed at nine points. According to the results of the study, the maximum mean monthly wave energy was obtained in the months of January and February. In terms of seasons, the maximum mean seasonal wave energy was observed in the winter. The analysis of the results at annual scale showed that the western part of the sea has more wave energy potential than the eastern part.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

References

  1. Abdollahzadehmoradi Y, Erdik T, Özger M, Altunkaynak A (2014) Application of MIKE 21 SW for wave hindcasting in Marmara Sea Basin for the year 2012. In: 11th international congress on advances in civil engineering (ACE) 21–25 October, 2014 Istanbul, Turkey

  2. Akay D, Atak M (2007) Grey prediction with rolling mechanism for electricity demand forecasting of Turkey. Energy 32:1670–1675. https://doi.org/10.1016/j.energy.2006.11.014

    Article  Google Scholar 

  3. Akpınar A (2013) Evaluation of wind energy potentiality at coastal locations along the north eastern coasts of Turkey. Energy 50:395–405. https://doi.org/10.1016/j.energy.2012.11.019

    Article  Google Scholar 

  4. Akpınar A, Kömürcü MI (2013) Assessment of wave energy resource of the Black Sea based on 15-year numerical hindcast data. Appl Energy 101:502–512. https://doi.org/10.1016/j.apenergy.2012.06.005

    Article  Google Scholar 

  5. Alamian R, Shafaghat R, Miri SJ, Yazdanshenas N, Shakeri M (2014) Evaluation of technologies for harvesting wave energy in Caspian Sea. Renew Sustain Energy Rev 32:468–476

    Article  Google Scholar 

  6. Arkhipkin VS, Gippius FN, Koltermann KP, Surkova GV (2014) Wind waves in the Black Sea: results of a hindcast study. Nat Hazards Earth Syst Sci 14:2883–2897. https://doi.org/10.5194/nhess-14-2883-2014

    Article  Google Scholar 

  7. Atan R, Goggins J, Nash S (2016) A detailed assessment of the wave energy resource at the Atlantic marine energy test site. Energies 9:967. https://doi.org/10.3390/en9110967

    Article  Google Scholar 

  8. Aydoğan B, Ayat B, Yüksel Y (2013) Black Sea wave energy atlas from 13 years hindcasted wave data. Renew Energy 57:436–447. https://doi.org/10.1016/j.renene.2013.01.047

    Article  Google Scholar 

  9. Contestabile P, Ferrante V, Vicinanza D (2015) Wave energy resource along the Coast of Santa Catarina (Brazil). Energies 8:14219–14243. https://doi.org/10.3390/en81212423

    Article  Google Scholar 

  10. Crutzen PJ, Mosier AR, Smith KA, Winiwarter W (2008) N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos Chem Phys 8:389–395

    Article  Google Scholar 

  11. DHI (2012) MIKE 21 SW scientific background. DHI, Denmark

    Google Scholar 

  12. Gunn K, Stock-Williams C (2012) Quantifying the global wave power resource. Renew Energy 44(2012):296–304

    Article  Google Scholar 

  13. Iglesias G, Carballo R (2010) Wave energy and nearshore hot spots: the case of the SE Bay of Biscay. Renew Energy 35:2490–2500. https://doi.org/10.1016/j.renene.2010.03.016

    Article  Google Scholar 

  14. Jacobson MZ, Delucchi MA (2011) Providing all global energy with wind, water, and solar power, Part I: technologies, energy resources, quantities and areas of infrastructure, and materials. Energy Policy 39:1154–1169. https://doi.org/10.1016/j.enpol.2010.11.040

    Article  Google Scholar 

  15. Jadidoleslam N, Özger M, Ağıralioğlu N (2016) Wave power potential assessment of Aegean Sea with an integrated 15-year data. Renew Energy 86:1045–1059. https://doi.org/10.1016/j.renene.2015.09.022

    Article  Google Scholar 

  16. Komen GJ, Cavaleri L, Donelan M, Hasselmann K, Hasselmann S, Janssen PAEM (1996) Dynamics and modelling of ocean waves. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  17. Lashof DA, Ahuja DR (1990) Relative contributions of greenhouse gas emissions to global warming. Nature. https://doi.org/10.1038/344529a0

    Article  Google Scholar 

  18. Moriasi DN, Arnold JG, Van Liew MW, Binger RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50:885–900

    Article  Google Scholar 

  19. Mørk G, Barstow S, Kabuth A, Pontes MT (2010) Assessing the global wave energy potential. In: Proceedings of OMAE 2010 29th international conference on ocean, offshore mechanics and arctic engineering June 6–11, 2010, Shanghai, China

  20. Özger M (2011) Prediction of ocean wave energy from meteorological variables by fuzzy logic modelling. Expert Syst Appl 38:6269–6274. https://doi.org/10.1016/j.eswa.2010.11.090

    Article  Google Scholar 

  21. Özsoy E, Ünlüata Ü (1997) Oceanography of the Black Sea: a review of some recent results. Earth Sci Rev 42(4):231–272. https://doi.org/10.1016/S0012-8252(97)81859-4

    Article  Google Scholar 

  22. Polonsky AB, Fomin VV, Garmashov AV (2011) Characteristics of wind waves of the Black Sea. Rep Natl Acad Sci Ukr 8:108–112 (ISSN 1025-6415)

  23. Pontes MT, Athanassoulis GA, Barstow S, Cavaleri L, Holmes B, Mollison D, Oliveira-Pires H (1996) An atlas of the wave-energy resource in Europe. J Offshore Mech Arctic Eng 118:307

    Article  Google Scholar 

  24. Potočnik J (2007) Renewable energy sources and the realities of setting an energy agenda. Science 315(5813):810–811. https://doi.org/10.1126/science.1139086

    Article  Google Scholar 

  25. Queffeulou P, Bentamy A (2007) Analysis of wave height variability using altimeter measurements: application to the mediterranean sea. J Atmos Ocean Technol 24(12):2078–2092. https://doi.org/10.1175/2007jtech0507.1

    Article  Google Scholar 

  26. Ramanarayanan TS, Williams JR, Dugas WA, Hauck LM, McFarland AMS (1997) Using APEX to identify alternative practices for animal waste management: Part II. Model application. ASAE Paper 97-2209. ASAE. http://apex.tamu.edu/media/16391/ramana.pdf. Accessed 25 Oct 2016

  27. Regueroa BG, Losadaa IJ, Méndeza FJ (2015) A global wave power resource and its seasonal, interannual and long-term variability. Appl Energy 148:366–380. https://doi.org/10.1016/j.apenergy.2015.03.114

    Article  Google Scholar 

  28. REN21 Renewables Global Status Report (GSR) (2015). Page 27, http://www.ren21.net/. Accessed 1 July 2017

  29. Rusu E (2014) Evaluation of the wave energy conversion efficiency in various coastal environments. Energies 7:4002–4018. https://doi.org/10.3390/en7064002

    Article  Google Scholar 

  30. Rusu L (2015) Assessment of the wave energy in the Black Sea based on a 15-year hindcast with data assimilation. Energies 8:10370–10388. https://doi.org/10.3390/en80910370

    Article  Google Scholar 

  31. Rusu L, Bernardino M, Guedes Soares C (2014) Wind and wave modelling in the Black Sea. J Oper Oceanogr 7(1):5–20. https://doi.org/10.1080/1755876X.2014.11020149

    Article  Google Scholar 

  32. SE4ALL (2015) Tracking progress http://www.se4all.org/trackingprogress/. Accessed 10 April 2015

  33. TURKEY General Directorate of Railways Harbors and Airports Construction (DLH) (1999) Port hydraulics laboratory Filyos harbour wave measurements

  34. Vicinanza D, Contestabile P, Ferrante V (2013) Wave energy potential in the north-west of Sardinia (Italy). Renew Energy 50:506–521. https://doi.org/10.1016/j.renene.2012.07.015

    Article  Google Scholar 

  35. Young IR (1999) Wind generated ocean waves, vol 2. Elsevier ocean engineering book series. Elsevier, New York

    Book  Google Scholar 

Download references

Acknowledgements

This research was funded by TÜBİTAK (The Scientific and Technological Research Council of Turkey) under the Project Number 112M413. We thank the European Centre for Medium-Range Weather Forecasts for providing the wind data and the Marine Geoscience Data System for providing the bathymetry data. In addition, we would like to thank Prof. Dr. Erdal Özhan for providing wave data of the Gelendzhik, Hopa and Sinop buoy stations.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yasin Abdollahzadehmoradi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Abdollahzadehmoradi, Y., Özger, M. & Altunkaynak, A. Long-Term Macro-Scale Assessment of Wave Power of Black Sea by an Optimized Numerical Model. Iran J Sci Technol Trans Civ Eng 42, 391–414 (2018). https://doi.org/10.1007/s40996-018-0108-1

Download citation

Keywords

  • Black Sea
  • MIKE 21 SW
  • Wave power potential
  • ECMWF
  • Wave data