Skip to main content
Log in

Scrutinization of Flow in the Immediate Vicinity of a Brink in a Tilting Flume

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

The flow characteristics of the subcritical and supercritical flows over an unconfined free overfall in a rectangular channel are presented with experimental data available in the literature. The experimental observations cover a wide range of flow rate on mild, steep and adverse slopes. The dependence of the ratio of the brink depth to the critical depth according to several flow parameters is examined. The relation between the flow rate and the brink depth ratio is both explicitly and implicitly demonstrated. The location of the critical depth for subcritical flows upstream of the brink is also investigated. It is concluded that the location of the critical depth for subcritical flows depends on the Froude number, the channel bed slope and the Manning roughness coefficient. Furthermore, it is observed that there is a significant similarity of the water surface profiles in the immediate upstream vicinity of the brink of the subcritical and supercritical flows.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

a u :

Unit conversion factor

b :

Width of the channel

Fr:

Froude number

g :

Acceleration due to gravity

k s :

Nikuradse’s sand roughness

l p :

Critical depth distance from the brink in subcritical flow condition

L :

Length dimension

M :

Mass dimension

n :

Manning’s roughness coefficient

R :

Reynolds’s number

R h :

Hydraulic radius

S c :

Critical bed slope

S o :

Bed slope

q :

Discharge per unit width

r 2 :

Correlation coefficient

RMS:

Root mean square error

T :

Time dimension

X :

Dimensionless horizontal length

x :

Coordinate points of water surface in horizontal

Y :

Dimensionless vertical length

y :

Coordinate points of water surface in vertical

y c :

Critical depth

y e :

Brink depth

y o :

Upstream normal depth

y p :

The length of the profile at the immediate vicinity of the brink

ρ :

The density of the fluid

Ф :

Dimensionless parameter

μ :

Viscosity

References

  • Ahmad Z (2003) Quasi-theoretical end-depth-discharge relationship for rectangular channels. J Irrig Drain Eng ASCE 129(2):138–141

    Article  Google Scholar 

  • Anderson MV (1967) Non-uniform flow in front of a free overfall. Acta Polytech Scand 42:1–24

    Article  MathSciNet  Google Scholar 

  • Bauer SW, Graff WH (1971) Free overfall as flow measurement device. J Irrig Drain Div ASCE 97(IR1):73–83

    Google Scholar 

  • Beirami MK, Nabavi SV, Chamani MR (2006) Free overfall in channels with different cross sections and sub-critical flow. Iran J Sci Technol Trans B Eng 30(B1):97–105

    Google Scholar 

  • Chow VT (1959) Open-channel hydraulics. The McGraw-Hill, New York

    Google Scholar 

  • Clarke NS (1965) On two-dimensional inviscid flow in a waterfall. J Fluid Mech 22:359–369

    Article  MATH  Google Scholar 

  • Davis AC, Ellett BGS, Jacob RP (1998) Flow measurements in sloping channels with rectangular free overfall. J Hydr Eng ASCE 124(7):760–763

    Article  Google Scholar 

  • Davis AC, Ellett BGS, Jacob RP (1999) Estimating trajectory of free overfall nappe. J Hydr Eng ASCE 125(1):79–82

    Article  Google Scholar 

  • Delleur JW, Dooge JC, Gent KW (1956) Influence of the slope and roughness on the free overfall. J Hydr Div ASCE, M.Sc. Thesis, Middle East Technical University, Ankara. 82HY(4): 30-35

  • Dey S (2000) End depth in steeply sloping rough rectangular channels. Sadhana 25(1):1–10

    Article  Google Scholar 

  • Dey S (2002) Free overfall in open channels. Flow Meas Instrum 13:247–264

    Article  Google Scholar 

  • Ferro V (1992) Flow measurement with rectangular free overfall. J Irrig Drain Eng ASCE 118(6):40–44

    Article  Google Scholar 

  • Fırat CE (2004) Effect of roughness on flow measurements in sloping rectangular channels with free overfall. M.Sc. Thesis, Middle East Technical University, Ankara

  • Gordon NG, Mcmahon TA, Finlayson BL, Gippel CJ, Nathan RJ (2204) Stream hydrology: an introduction for ecologists. Second edition, John Wiley, p 444, (page 463)

  • Guo Y (2005) Numerical modeling of free overfall. J Hydr Eng ASCE 131(2):134–138

    Article  Google Scholar 

  • Hager W (1983) Hydraulics of plane free overfall. J Hydr Eng ASCE 109(12):1683–1697

    Article  Google Scholar 

  • Heasted M, Dyhouse G, Hatchett J, Benn J (2003). Floodplain modeling using HEC-RAS, First edition, Heastes Press, Waterbury. ISBN:0-9714141-0-6

  • Khan AA (1999) Modeling rectangular overfalls using Boussinesq equations. Proc Inst Civ Eng Water Marit Energy 136:77–80

    Article  Google Scholar 

  • Khan AA, Steffler PM (1996) Modeling overfalls using vertical averaged and moment equations. J Hydr Eng ASCE 122(7):397–402

    Article  Google Scholar 

  • Kraijenhoff DA, Dommerholt A (1977) Brink depth method in rectangular channel. J Irrig Drain Div ASCE 103(2):171–177

    Google Scholar 

  • Kutlu I (2005) The behaviour of flow in the immediate vicinity of a sloping rectangular channel with free overfall. M.Sc. Thesis. The Middle East Technical University, Ankara, Turkey

  • Lienhard (V) JH, Lienhard (IV) JH (1984) Velocity coefficients for free jets from. sharp-edged orifices. J Fluids Eng 106:13–17

    Article  Google Scholar 

  • Marchi E (1993) On the free overfall. J Hydr Res IAHR 31(6):777–790

    Article  Google Scholar 

  • Montes JS (1992) A potential flow solution for the free overfall. Proc Inst Civ Eng Waters Marit Energ 96:258–259

    Google Scholar 

  • Peakall J, Warburton J (1996) Surface tension in small hydraulic river models-the significance of the Weber number. J Hydrol (NZ) 35(2):199–212

    Google Scholar 

  • Rajaratnam N, Muralidhar D (1968) Characteristics of the rectangular free overfall. J Hydr Res IAHR 6(3):233–258

    Article  Google Scholar 

  • Rajaratnam N, Muralidhar D, Beltaos S (1976) Roughness effects on rectangular free overfall. J Hydr Div ASCE 102(HY5):599–614

    Google Scholar 

  • Rouse H (1936) Discharge characteristics of the free overfall. Civ Eng ASCE 6(4):257–260

    Google Scholar 

  • Rouse H (1943) Discussion of energy loss at the base of the free overfall by WL Moore. Trans ASCE 108(2204):1383–1387

    Google Scholar 

  • Simons DB, Senturk F (1992) Sediment transport technology water and sediment dynamics, Water Resources Publications, p 897. ISBN:(91-67534), see page 96

  • Southwell R, Vaisey G (1946) Relaxation methods applied to engineering problems, fluid motions characterized by ‘free’ streamlines. Philos Trans R Soc London Series A 240:117–161

    Article  Google Scholar 

  • Sterling M, Sharifi S, Knight DW (2010) The end depth ratio and principal component analysis. Proc Inst Civ Eng Water Manag 163(WM8):425–430

    Article  Google Scholar 

  • Strelkoff T, Moayeri MS (1970) Pattern of potential flow in a free overfall. J Hydr Div ASCE 96(4):879–901

    Google Scholar 

  • Tigrek Ş, Öztürk HU (2006) Discharge predictions using ANN in sloping rectangular channels with free overfall. In: Seventh International Congress on Advances in Civil Engineering. October 11–13, Istanbul

  • Tiğrek Ş, Firat CE, Ger M (2008) Use of brink depth in discharge measurement. J Irrig Drain Div ASCE 134(1):89–95

    Article  Google Scholar 

  • Turan ÇK (2002) Flow measurements in sloping rectangular channels with free overfall. M.Sc. Thesis, Middle East Technical University, Ankara

  • Yen BC (2002) Open channel flow resistance. ASCE J Hydraul Eng 128(1):20–39

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şahnaz Tiğrek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiğrek, Ş., Kumcu, Ş.Y. & Ger, A.M. Scrutinization of Flow in the Immediate Vicinity of a Brink in a Tilting Flume. Iran J Sci Technol Trans Civ Eng 41, 213–220 (2017). https://doi.org/10.1007/s40996-017-0053-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-017-0053-4

Keywords

Navigation