A Hybrid Model Based on Fuzzy Approach Type II to Select Private Sector in Partnership Projects

Research Paper

Abstract

Introduction of private sectors into major projects has recently dramatically increased. The most important factor necessitating the partnership projects of major projects is limitation of financial and human resources for these projects. The close link between the interests of a private sector and the process of a project to some extent assures the successful completion of any project. Selecting an appropriate private sector meeting the criteria set by organizations to handle a project is one of the pivotal factors for success in establishing a private–public partnership. Therefore, the main purpose of this study is to introduce a hybrid model for evaluation and selection of the private sector for partnership projects. An integrated SWOT (strength, weakness, opportunity, threat) Fuzzy VIKOR analysis was performed where the SWOT analysis assesses the context of the organization and the fuzzy VIKOR evaluates alternative options available to a company based on the SWOT outputs. Three options were assessed and prioritized with the proposed method. Then, the results were compared with the PROMEEHTE method. The comparisons varied for different sensitivities. Therefore, utilizing decisions’ strategy is necessary for appropriate prioritizing strategy.

Keywords

Multi-criteria decision-making (MCDM) Fuzzy theory SWOT Private sector Fuzzy type II 

References

  1. Alper KR, Chabot RJ, Kim AH, Prichep LS, John ER (1990) Quantitative EEG correlates of crack cocaine dependence. Psychiatry Res 35(2):95–105. doi: 10.1016/0925-4927(90) CrossRefGoogle Scholar
  2. Ashtiani B, Haghighirad F, Makui A (2009) Extension of fuzzy TOPSIS method based on interval-valued fuzzy sets. Appl Soft Comput 9(2):457–461. doi: 10.1016/j.asoc.2008.05.005 CrossRefGoogle Scholar
  3. Berman RM, Narasimhan M, Sanacora G, Miano AP, Hoffman RE, Hu XS, Charney DS, Boutros NN (2000) A randomized clinical trial of repetitive transcranial magnetic stimulation in the treatment of major depression. Biol Psychiatry 47(4):332–337 PMID:10686268 CrossRefGoogle Scholar
  4. Brans J-P (1986) L’élaboration d’instruments d’aide à la décision. Nadeau, Raymond et Maurice Landry. doi: 10.1016/0377-2217(86)90044-5 Google Scholar
  5. Chen SJ, Chen SM (2003) A new method for haning mul-ticriteria fuzzy decision-making problems.using FN-IOWA operators. Cybern Syst 34(2):109–137. doi: 10.1080/01969720302866 CrossRefGoogle Scholar
  6. Chen S-M, Chen J-H (2009) Fuzzy risk analysis based on ranking generalized fuzzy numbers with different heights and different spreads. Expert Syst Appl 36(3):6833–6842. doi: 10.1016/j.eswa.2008.08.015 CrossRefGoogle Scholar
  7. Chen H-M, Tseng C-H (2005) The performance of marketing alliances between the tourism industry and credit card issuing banks in Taiwan. Tour Manag 26(1):15–24. doi: 10.1016/j.tourman.2003.08 CrossRefGoogle Scholar
  8. Chu T-C (2002) Selecting plant location via a fuzzy TOPSIS approach. Int J Adv Manuf Technol 20(11):859–864. doi: 10.1007/s001700200227 CrossRefGoogle Scholar
  9. Edwards K, Deng Y-M (2007) Supporting design decision-making when applying materials in combination. Mater Des 28(4):1288–1297. doi: 10.1016/j.matdes.2005.12.009 CrossRefGoogle Scholar
  10. Fang S, Chiang S, Fang S (2002) An integrative model for partner relationship. An empirical research of small and middle firms. J Manag 19(4):615–645Google Scholar
  11. Fitzgerald PB, Sritharan A, Daskalakis ZJ, de Castella AR, Kulkarni J, Egan G (2007) A functional magnetic resonance imaging study of the effects of low frequency right prefrontal transcranial magnetic stimulation in depression. J Clin Psychopharmacol 27(5):488–492. doi: 10.1371/journal.pone.0070089 CrossRefGoogle Scholar
  12. Fong PS-W, Choi SK-Y (2000) Final contractor selection using the analytical hierarchy process. Constr Manag Econ 18(5):547–557. doi: 10.1080/014461900407356 CrossRefGoogle Scholar
  13. Ghodsypour SH, O’brien C (1998) A decision support system for supplier selection using an integrated analytic hierarchy process and linear programming. Int J Prod Econ 56:199–212. doi: 10.1016/S0925-5273(97)00009-1 CrossRefGoogle Scholar
  14. Gorzałczany MB (1987) A method of inference in approximate reasoning based on interval-valued fuzzy sets. Fuzzy Sets Syst 21(1):1–17. doi: 10.1016/0165-0114(87)90148-5 MathSciNetCrossRefMATHGoogle Scholar
  15. Griffin L (2004) Creating affordable housing in toronto using public-private partnerships. FES outstanding graduate student paper series, vol 9, no 2. York University, TorontoGoogle Scholar
  16. Guijun W, Xiaoping L (1998) The applications of interval-valued fuzzy numbers and interval-distribution numbers. Fuzzy Sets Syst 98(3):331–335. doi: 10.1016/S0165-0114(96)00368-5 MathSciNetCrossRefMATHGoogle Scholar
  17. Hausmann A, Kemmler G, Walpoth M, Mechtcheriakov S, Kramer-Reinstadler K, Lechner T, Walch T, Deisenhammer EA, Kofler M, Rupp CI, Hinterhuber H, Conca A (2004) No benefit derived from repetitive transcranial magnetic stimulation in depression: a prospective, single centre, randomised, double blind, sham controlled “add on” trial. J Neurol Neurosurg Psychiatry 75(2):320–322. doi: 10.1136/jnnp.2002.009209 Google Scholar
  18. Hong DH, Lee S (2002) Some algebraic properties and a distance measure for interval-valued fuzzy numbers. Inf Sci 148(1):1–10. doi: 10.1016/S0020-0255(02)00265-7 MathSciNetCrossRefMATHGoogle Scholar
  19. Hwang C-L, Yoon K (1981) Multiple attribute decision making. Springer. doi: 10.1016/j.mcm.2004.10.003 MATHGoogle Scholar
  20. Jahanshahloo GR, Lotfi FH, Izadikhah M (2006) An algorithmic method to extend TOPSIS for decision-making problems with interval data. Appl Math Comput 175(2):1375–1384. doi: 10.1016/j.amc.2005.08.048 MATHGoogle Scholar
  21. Jee D-H, Kang K-J (2000) A method for optimal material selection aided with decision making theory. Mater Des 21(3):199–206. doi: 10.1016/S0261-3069(99)00066-7 CrossRefGoogle Scholar
  22. Ke Y, Liu X, Wang S (2008) Equitable financial evaluation method for public-private partnership projects. Tsinghua Sci Technol 13(5):702–707. doi: 10.1016/S1007-0214(08)70111-1 CrossRefGoogle Scholar
  23. Kumaraswamy MM, Anvuur AM (2008) Selecting sustainable teams for PPP projects. Build Environ 43(6):999–1009. doi: 10.1016/j.buildenv.2007.02.001 CrossRefGoogle Scholar
  24. Liu P (2011) A weighted aggregation operators multi-attribute group decision-making method based on interval-valued trapezoidal fuzzy numbers. Expert Syst Appl 38(1):1053–1060. doi: 10.1016/j.eswa.2010.07.144 CrossRefGoogle Scholar
  25. Liu W, Zeng L (2008) A new TOPSIS method for fuzzy multiple attribute group decision making problem. J Guilin Univ Elect Technol 28(1):59–62. doi: 10.1007/s10700-013-9160-2 Google Scholar
  26. Mahdi IM, Riley MJ, Fereig SM, Alex AP (2002) A multi-criteria approach to contractor selection. Eng Constr Archit Manag 9(1):29–37. doi: 10.1108/eb021204 Google Scholar
  27. Mayer G, Aviram S, Walter G, Levkovitz Y, Bloch Y (2012) Long-term follow-up of adolescents with resistant depression treated with repetitive transcranial magnetic stimulation. J ECT 28(2):84–86. doi: 10.1097/YCT.0b013e318238f01a CrossRefGoogle Scholar
  28. Olson DL (2001) Comparison of three multicriteria methods to predict known outcomes. Eur J Oper Res 130(3):576–587. doi: 10.1016/S0377-2217(99)00416-6 CrossRefMATHGoogle Scholar
  29. Opricovic S (1998) Multicriteria optimization of civil engineering systems. Fac Civil Eng Belgrade 2(1):5–21MathSciNetGoogle Scholar
  30. Opricovic S, Tzeng G-H (2004) Compromise solution by MCDM methods: a comparative analysis of VIKOR and TOPSIS. Eur J Oper Res 156(2):445–455. doi: 10.1016/S0377-2217(03)00020-1 CrossRefMATHGoogle Scholar
  31. Opricovic S, Tzeng G-H (2007) Extended VIKOR method in comparison with outranking methods. Eur J Oper Res 178(2):514–529. doi: 10.1016/j.ejor.2006.01.020 CrossRefMATHGoogle Scholar
  32. Osuna EE, Aranda A (2007) Combining swot and ahp techniques for strategic planning. In: Proceedings of the 9th international symposium on the analytic hierarchy process-ISAHP 2007 (on-line version)Google Scholar
  33. Ravanshadnia M, Abbasian HR, Rajaie H (2010) Selecting engineering partner for EPC projects using a fuzzy AHP approach. Int J Manag Sci Eng Manag 5(4):278–284. doi: 10.1080/17509653.2010.10671118 Google Scholar
  34. Ravanshadnia M, Rajaie H, Abbasian H (2011) A comprehensive bid/no-bid decision making framework for construction companies. Iran J Sci Technol Trans B-Eng 35(C1):95Á103Google Scholar
  35. Roy B (1996) Multicriteria methodology for decision aiding. Springer, BerlinCrossRefMATHGoogle Scholar
  36. Roy B, Bertier P (1973) La Méthode ELECTRE II (Une application au média-planning)Google Scholar
  37. Sanayei A, Farid Mousavi S, Yazdankhah A (2010) Group decision making process for supplier selection with VIKOR under fuzzy environment. Expert Syst Appl 37(1):24–30. doi: 10.1016/j.eswa.2009.04.063 CrossRefGoogle Scholar
  38. Tang L, Shen Q, Cheng EW (2010) A review of studies on Public-Private Partnership projects in the construction industry. Int J Project Manag 28(7):683–694. doi: 10.1016/j.ijproman.2009.11.009 CrossRefGoogle Scholar
  39. Türkşen İ, Bilgiç T (1996) Interval valued strict preference with Zadeh triples. Fuzzy Sets Syst 78(2):183–195. doi: 10.1016/0165-0114(95)00167-0 MathSciNetCrossRefMATHGoogle Scholar
  40. Wang Y (2002) BOT trap. Glob Entrepreneur 2Google Scholar
  41. Wang Y-M, Elhag T (2006) Fuzzy TOPSIS method based on alpha level sets with an application to bridge risk assessment. Expert Syst Appl 31(2):309–319. doi: 10.1016/j.eswa.2005.09.040 CrossRefGoogle Scholar
  42. Wang G, Li X (1999) Correlation and information energy of interval-valued fuzzy numbers. Fuzzy Sets Syst 103(1):169–175. doi: 10.1016/S0165-0114(97)00303-5 MathSciNetCrossRefMATHGoogle Scholar
  43. Wang J-W, Cheng C-H, Huang K-C (2009a) Fuzzy hierarchical TOPSIS for supplier selection. Appl Soft Comput 9(1):377–386. doi: 10.1016/j.asoc.2008.04.014 CrossRefGoogle Scholar
  44. Wang J, Xu Y, Li Z (2009b) Research on project selection system of pre-evaluation of engineering design project bidding. Int J Project Manage 27(6):584–599. doi: 10.1016/j.ijproman.2008.10.003 CrossRefGoogle Scholar
  45. Wei S-H, Chen S-M (2009) Fuzzy risk analysis based on interval-valued fuzzy numbers. Expert Syst Appl 36(2):2285–2299. doi: 10.1016/j.eswa.2007.12.037 CrossRefGoogle Scholar
  46. Ye F, Li Y-N (2009) Group multi-attribute decision model to partner selection in the formation of virtual enterprise under incomplete information. Expert Syst Appl 36(5):9350–9357. doi: 10.1016/j.eswa.2009.01.015 CrossRefGoogle Scholar
  47. Yoon K (1987) A reconciliation among discrete compromise solutions. J Oper Res Soc 38:277–286. doi: 10.1057/jors.1987.44 CrossRefMATHGoogle Scholar
  48. Yu P-L (1973) A class of solutions for group decision problems. Manage Sci 19(8):936–946MathSciNetCrossRefMATHGoogle Scholar
  49. Zeleny M, Cochrane JL (1982) Multiple criteria decision making. McGraw-Hill, New YorkMATHGoogle Scholar
  50. Zeng J, An M, Smith NJ (2007) Application of a fuzzy based decision making methodology to construction project risk assessment. Int J Project Manage 25(6):589–600. doi: 10.1016/j.ijproman.2007.02.006 CrossRefGoogle Scholar
  51. Zhang Y (1996) Wills and ways: Policy dynamics of HOPE VI from 1992e2002. Unpublished PhD thesis, Massachusetts Institute of TechnologyGoogle Scholar
  52. Zhu H, Zhang G, Shao X (2007) Study on the application of fuzzy TOPSIS to multiple criteria group decision making problem. Industrial Engineering and Management 1:99–102Google Scholar

Copyright information

© Shiraz University 2017

Authors and Affiliations

  1. 1.Department of Civil EngineeringAmirkabir University of TechnologyTehranIran

Personalised recommendations