Skip to main content
Log in

Characteristics and Multifractal Properties of Daily Streamflow in a Semiarid Environment

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Civil Engineering Aims and scope Submit manuscript

Abstract

Multifractality of daily streamflow time series data was investigated for ten hydrometric stations of the semiarid Karkheh watershed (western Iran). Mann–Kendall test results indicated nonsignificant trend (at 95 % confidence level) in the annual streamflow time series data of all stations. We applied multifractal detrended fluctuation analysis technique to detect characteristics and multifractal properties of daily streamflow time series data. The Hurst exponent (H) values in all of the stations varied between 0.5 and 1, showing long memory (persistence), except Aran Gharb station, which indicated short memory (anti-persistence). Fluctuation function, F q (s), versus s detected crossovers representing streamflow temporal scaling of 310–400 days at the studied stations, which corresponds to 1 year. Results confirmed multifractality of daily streamflow time series data in all stations, as evidenced by the q relationships with h(q), τ(q) and D(q) and also the singularity spectrum f(α) versus α relationships. Analyses of shuffled and surrogated streamflow series demonstrated that multifractality is due to both PDF and long-range correlation properties. According to the results, similar patterns of hydrological characteristics and streamflow generation mechanisms exist across the study area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adeloye AJ, Montaseri M (2002) Preliminary streamflow data analyses prior to water resources planning study. Hydrol Sci J 47(5):679–692

    Article  Google Scholar 

  • Aksoy H (2007) Hydrological variability of the European part of Turkey. Iran J Sci Technol Trans B Eng 31(B2):225–236

    Google Scholar 

  • Azmi A, Araghinejad S, Kholghi M (2010) Multi model data fusion for hydrological forecasting using K-nearest neighbor method. Iran J Sci Technol Trans B Eng 34(B1):81–92

    Google Scholar 

  • Barunik J, Aste T, Matteo TD, Liu PR (2012) Undersanding the source of multi-fractality in financial markets. Phys A 391:4234–4251

    Article  Google Scholar 

  • Bunde EK, Kantelhardt JW, Braun P, Bunde A (2006) Long term persistence and multifractality of river runoff records: detrended fluctuation studies. J Hydrol 322:120–137

    Article  Google Scholar 

  • Chen Z, Ivanov PCh, Hu K, Stanley HE (2002) Effect of nonstationarities on detrended fluctuation analysis. Phys Rev E 65:041107

    Article  Google Scholar 

  • Fattahi MH, Talebbeydokhti N, Moradkhani H, Nikooee E (2013) Revealing the chaotic nature of river flow. Iran J Sci Technol Trans Civ Eng 37(C+):437–456

    Google Scholar 

  • Feder J (1988) Fractals. Plenum, New York

    Book  MATH  Google Scholar 

  • Gneiting T, Schlather M (2004) Stochastic models that separate fractal dimension and the Hurst effect. SIAM Rev 46:269–282

    Article  MathSciNet  MATH  Google Scholar 

  • Hajian S, Movahed SMS (2010) Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations. Phys A 389:4942

    Article  Google Scholar 

  • Helsel DR, Hirsch RM (2002) Statistcal method in water resources. USGS Tech Water Resour Invest 4(A3):524

    Google Scholar 

  • Hu K, Ivanov PCh, Chen Z, Carpena P, Stanley HE (2001) Effect of trends on detrended fluctuation analysis. Phys Rev E 64:011114

    Article  Google Scholar 

  • Hu J, Gao J, Wang X (2009) Multifractal analysis of sunspot time series: the effects of the 11-year cycle and Fourier truncation. J Stat Mech Theory Exp 2009(2):P02066. doi:10.1088/1742-5468/2009/02/P02066

  • Hurst H (1951) Long term storage capacity of reservoir. Trans ASCE 116:770–799

    Google Scholar 

  • Jimenez-Hornero FJ, Ariza-Villaverde AB, De Rove EG (2013) Multifractal description of simulated flow velocity in idealized porous media by using the sandbox method. Fractals 21(1):135006

    Article  Google Scholar 

  • Kantelhardt JW, Koscielny-Bunde EH, Rego HA, Havlin S, Bunde A (2001) Detecting long-range correlations with detrended fluctuation analysis. Phys A 295:441–454

    Article  MATH  Google Scholar 

  • Kantelhardt J, Zschiegner SA, Bunde EK, Halvin S, Bunde A, Stanley HE (2002) Multifractal detrended fluctuation analysis of nonstationary time series. Phys A 316:87–114

    Article  MATH  Google Scholar 

  • Kendall MG (1975) Rank correlation measures. Charles Griffim, London

    Google Scholar 

  • Kestener P, Arneodo A (2008) A multifractal formalism for vector-valued random fields based on wavelet analysis: application to turbulent velocity and velocity 3D numerical data. Stoch Env Res Risk Assess 22:421–435

    Article  MathSciNet  MATH  Google Scholar 

  • Koscielny-Bunde E, Bunde A, Havlin S, Roman HE, Goldreich Y, Schellnhuber HJ (1998) Indication of universal persistence law governing atmospheric variability. Phys Rev Lett 81:729

    Article  Google Scholar 

  • Kuczera G (1982) On the relationship between the reliability of parameter estimates and hydrologic time series data used in calibration. Water Resour Res 18(1):146–154

    Article  Google Scholar 

  • Lettenmaier DP, Wood AW, Palmer RN, Wood EF, Stakhiv EZ (1999) Water resources implications of global warming: a US regional perspective. Clim Chang 43:537–579

    Article  Google Scholar 

  • Mann HB (1945) Non-parametric tests against trend. Econometrica 13:245–259

    Article  MathSciNet  MATH  Google Scholar 

  • Movahed SMS, Jafari GR, Ghasemi F, Sohrab R, Rahimi Tabar MR (2006) Multifractal detrended fluctuation analysis of sunspot time series. J Stat Mech 0602:P003

    Google Scholar 

  • Movehd SMS, Hermanis E (2011) Fractal analysis of river flow fluctuations. Phys A Stat Mech Appl 387(4):915–932

    Google Scholar 

  • Nagarajan R, Kavasseri RG (2005a) Minimizing the effect of sinusoidal trends in detrended fluctuation analysis. Int J Bifurc Chaos 15(5):1767–1773

    Article  MATH  Google Scholar 

  • Nagarajan R, Kavasseri RG (2005b) Minimizing the effect of periodic and quasi-periodic trends in detrended fluctuation analysis. Chaos Solitons Fractals 26(3):777–784

    Article  MATH  Google Scholar 

  • Nagarajan R, Kavasseri RG (2005c) Minimizing the effect of trends on detrended fluctuation analysis of long-range correlated noise. Phys A 354:182–198

    Article  MATH  Google Scholar 

  • Ossadnik SM, Buldyrev SB, Goldberger AL, Havlin S, Mantegna RN, Peng CK, Simons M, Stanley HE (1994) Correlation approach to identify coding regions in DNA sequences. Biophys J 67:64

    Article  Google Scholar 

  • Pandey G, Lovejoy S, Schertzer D (1998) Multifractal analysis of daily river flows including extremes for basins of five to two million square kilometers, one day–75 years. J Hydrol 208:62–81

    Article  Google Scholar 

  • Peitgen HO, Jurgens H, Saupe D (1992) Chaos and fractals, new frontiers of science. Springer, Berlin

    Book  MATH  Google Scholar 

  • Peng CK, Buldyrev SV, Havlin S, Simons M, Stanley HE, Goldberger AL (1994) Mosaic organization of DNA nucleotides. Phys Rev E 49:1685–1689

    Article  Google Scholar 

  • Podobnik B, Stanley HE (2008) Detrended cross-correlation analysis: a new method for analyzing two nonstationary time series. Phys Rev Lett 100:084102

    Article  Google Scholar 

  • Rakhshandehroo GR, Ghadampour Z (2011) A combination of fractal analysis and artificial neural network to forecast groundwater depth. Iran J Sci Technol Trans Civ Eng 35(C1):121–130

    Google Scholar 

  • Sposito G (1998) Scale dependence and scale invariance in hydrology. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Tessier Y, Lovejoy S, Hubert P, Schertzer D, Pecknold S (1996) Multifractal analysis and modeling of rainfall and river flows and scaling, causal transfer functions. J Geophys Res 101(D21):26427–26440

    Article  Google Scholar 

  • Wilks DC (2006) Statistical methods in the atmospheric sciences, 2nd edn. Academic Press, New York

    Google Scholar 

  • Xue CF, Shang PG, Jing W (2012) Multifractal detrended cross-correlation analysis of BVP model time series. Nonlinear Dyn 69:263–273

    Article  MathSciNet  Google Scholar 

  • Yang D, Zhang Ch, Liu Y (2015) Characteristics analysis of near-fault earthquake ground motions. Soil Dyn Earthq Eng 72:12–23

    Article  Google Scholar 

  • Zhang Q, Chong Y, Yang T (2009) Scaling properties of the runoff variations in the arid and semiarid regions of China: a case study of the Yellow River basin. Stoch Environ Res Risk Assess 23:1103–1111

    Article  Google Scholar 

  • Zhou WX (2008) Multifractal detrended cross-correlation analysis for two nonstationary signals. Phys Rev E 77:066211

    Article  Google Scholar 

  • Zhou X, Persuad N, Wang H (2006) Scale invariance of daily runoff time series in agricultural watersheds. Hydrol Earth Syst Sci 10:79–91

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Khalili.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emadi, S., Khalili, D. & Movahed, S.M.S. Characteristics and Multifractal Properties of Daily Streamflow in a Semiarid Environment. Iran. J. Sci. Technol.Trans. Civ. Eng. 40, 49–58 (2016). https://doi.org/10.1007/s40996-016-0007-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40996-016-0007-2

Keywords

Navigation