Skip to main content

Advertisement

Log in

The Effects of Pressure and Size Parameter on the Lattice Thermal Conductivity in Multilayer Hexagonal Boron Nitride

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions A: Science Aims and scope Submit manuscript

Abstract

The shift in lattice thermal conductivity of multilayer hexagonal boron nitride is studied as a function of layer thickness, hydrostatic pressure, and temperature. A Morelli–Callaway model is used for pressures ranging from zero to 7 GPa and temperatures scale from 2 to 350 K. Hydrostatic pressure and size parameters such as the mean bond length, melting temperature, and bulk modulus affect the lattice thermal conductivity of bulk and multilayer hexagonal Boron Nitride. The peak value of lattice thermal conductivity for both bulk and multilayer is seen to fall when pressure is increased, and the decline in lattice thermal conductivity is greater as the number of layers decreases. The drop in thermal conductivity is due to a reduction in phonon movement in the system as the number of layers decreases. The Morelli–Callaway model based on Clapeyron–Murnaghan equations is an effective approach for determining the pressure impact of lattice thermal conductivity. The lattice thermal conductivity declined as pressure is reduced, and the mass density and bulk modulus decreased as the thickness of the thin layer increased, while compressibility, solid molar volume, and liquid molar volume rose. When the experimental data and theoretical calculations for bulk and multilayer h-BN were compared, the findings indicated good agreement. It's crucial to lower the heat conductivity of the materials that are useful for device applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • Abdullah BJ, Jiang Q, Omar MS (2016) Effects of size on mass density and its influence on mechanical and thermal properties of ZrO2 nanoparticles in different structures. Bull Mater Sci 39:1295–1302. https://doi.org/10.1007/s12034-016-1244-5

    Article  Google Scholar 

  • Abdullah B, Omar M, Jiang Q (2018) Size dependence of the bulk modulus of Si nanocrystals. Sādhanā 43:1–5

    MathSciNet  Google Scholar 

  • Adachi S. (2004). Handbook on physical properties of semiconductors: Springer Science & Business Media.

  • Albe K (1997) Theoretical study of boron nitride modifications at hydrostatic pressures. Phys Rev B 55:6203–6210. https://doi.org/10.1103/PhysRevB.55.6203

    Article  Google Scholar 

  • Aparna A, Sethulekshmi A, Jayan JS, Saritha A, Joseph K (2021) Recent advances in boron nitride based hybrid polymer nanocomposites. Macromol Mater Eng 306:2100429

    Google Scholar 

  • Asen-Palmer M, Bartkowski K, Gmelin E, Cardona M, Zhernov A, Inyushkin A, Taldenkov A, Ozhogin V et al (1997) Thermal conductivity of germanium crystals with different isotopic compositions. Phys Rev B 56:9431

    Google Scholar 

  • Balandin A, Wang KL (1998) Significant decrease of the lattice thermal conductivity due to phonon confinement in a free-standing semiconductor quantum well. Phys Rev B 58:1544

    Google Scholar 

  • Boudiombo J, Baehr O, Boudrioua A, Thevenin P, Loulergue J, Bath A (1997) Modes of propagating light waves in thin films of boron nitride deposited by plasma enhanced chemical vapor deposition. Mater Sci Eng, B 46:96–98

    Google Scholar 

  • Callaway J (1959) Model for lattice thermal conductivity at low temperatures. Phys Rev 113:1046–1051. https://doi.org/10.1103/PhysRev.113.1046

    Article  MATH  Google Scholar 

  • Chen L, Elibol K, Cai H, Jiang C, Shi W, Chen C, Wang HS, Wang X et al (2021) Direct observation of layer-stacking and oriented wrinkles in multilayer hexagonal boron nitride. 2D Materials 8(2):024001. https://doi.org/10.1088/2053-1583/abd41e

    Article  Google Scholar 

  • De Laeter JR, Böhlke JK, De Bievre P, Hidaka H, Peiser H, Rosman K, Taylor P (2003) Atomic weights of the elements. Review 2000 (IUPAC Technical Report). Pure Appl Chem 75:683–800

    Google Scholar 

  • Gholivand H, Donmezer N (2017) Phonon mean free path in few layer graphene, hexagonal boron nitride, and composite bilayer h-BN/graphene. IEEE Trans Nanotechnol 16:752–758. https://doi.org/10.1109/TNANO.2017.2672199

    Article  Google Scholar 

  • Gutierrez-Mora F, Erdemir A, Goretta K, Dominguez-Rodriguez A, Routbort J (2005) Dry and oil-lubricated sliding wear of Si 3 N 4 and Si 3 N 4/BN fibrous monoliths. Tribol Lett 18:231–237

    Google Scholar 

  • Hamarashid MM, Omar MS, Qader IN (2022) Hydrostatic pressure effect on lattice thermal conductivity in Si nanofilms. Silicon. https://doi.org/10.1007/s12633-022-01985-0

    Article  Google Scholar 

  • Hao XP, Cui DL, Shi GX, Yin YQ, Xu XG, Jiang MH, Xu XW, Li YP (2001) Low temperature benzene thermal synthesis and characterization of boron nitride nanocrystals. Mater Lett 51:509–513. https://doi.org/10.1016/S0167-577X(01)00344-5

    Article  Google Scholar 

  • Heuer S, Li BS, Armstrong DEJ, Zayachuk Y, Linsmeier C (2020) Microstructural and micromechanical assessment of aged ultra-fast sintered functionally graded iron/tungsten composites. Mater Des 191:108652. https://doi.org/10.1016/j.matdes.2020.108652

    Article  Google Scholar 

  • Hu S, Yang J, Liu W, Dong Y, Cao S, Liu J (2011) Prediction of formation of cubic boron nitride by construction of temperature–pressure phase diagram at the nanoscale. J Solid State Chem 184:1598–1602. https://doi.org/10.1016/j.jssc.2011.04.037

    Article  Google Scholar 

  • Jayaraman A, Klement W Jr, Kennedy G (1963) Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure. Phys Rev 130:540

    Google Scholar 

  • Jiang Q, Liang L, Zhao D (2001) Lattice contraction and surface stress of fcc nanocrystals. J Phys Chem B 105:6275–6277

    Google Scholar 

  • Jiang Q, Yang CC, Li JC (2003) Size-dependent melting temperature of polymers. Macromol Theory Simul 12:57–60

    Google Scholar 

  • Jo I, Pettes MT, Kim J, Watanabe K, Taniguchi T, Yao Z, Shi L (2013) Thermal conductivity and phonon transport in suspended few-layer hexagonal boron nitride. Nano Lett 13:550–554. https://doi.org/10.1021/nl304060g

    Article  Google Scholar 

  • Karch K, Bechstedt F (1997) Ab initio lattice dynamics of BN and AlN: covalent versus ionic forces. Phys Rev B 56:7404–7415. https://doi.org/10.1103/PhysRevB.56.7404

    Article  Google Scholar 

  • Karim HH, Omar MS, Qader IN (2022) Hydrostatic pressure effect on melting temperature and lattice thermal conductivity of bulk and nanowires of indium arsenide. Physica B 640:414045. https://doi.org/10.1016/j.physb.2022.414045

    Article  Google Scholar 

  • Khitun A, Balandin A, Wang K (1999) Modification of the lattice thermal conductivity in silicon quantum wires due to spatial confinement of acoustic phonons. Superlattices Microstruct 26:181–193

    Google Scholar 

  • Kimura Y, Wakabayashi T, Okada K, Wada T, Nishikawa H (1999) Boron nitride as a lubricant additive. Wear 232:199–206

    Google Scholar 

  • Lelonis D A, Tereshko J W, Andersen C M (2003) Boron nitride powder a high-performance alternative for solid lubrication. GE Adv Ceram: 4

  • Liang L, Li B (2006) Size-dependent thermal conductivity of nanoscale semiconducting systems. Phys Rev B 73:153303

    Google Scholar 

  • Lipp A, Schwetz KA, Hunold K (1989) Hexagonal boron nitride: fabrication, properties and applications. J Eur Ceram Soc 5:3–9

    Google Scholar 

  • Lobo LQ, Ferreira AG (2001) Phase equilibria from the exactly integrated Clapeyron equation. J Chem Thermodyn 33:1597–1617

    Google Scholar 

  • Majety S, Cao X, Dahal R, Pantha B, Li J, Lin J, Jiang H. (2012) Semiconducting hexagonal boron nitride for deep ultraviolet photonics. Paper presented at the Quantum Sensing and Nanophotonic Devices IX.

  • Ming Y, You G, Xu X, Wen H, Zhao J (2019) Effect of thickness on the thermal conductivity and microstructure of die-cast AZ91D magnesium alloy. Metall Mater Trans A 50:5969–5976

    Google Scholar 

  • Morelli D, Heremans J, Slack G (2002) Estimation of the isotope effect on the lattice thermal conductivity of group IV and group III-V semiconductors. Phys Rev B 66:195304

    Google Scholar 

  • Muramatsu Y, Kaneyoshi T, Gullikson EM, Perera RC (2003) Angle-resolved soft X-ray emission and absorption spectroscopy of hexagonal boron nitride. Spectrochim Acta Part A Mol Biomol Spectrosc 59:1951–1957

    Google Scholar 

  • Naftaly M, Leist J, Fletcher JR (2013) Optical properties and structure of pyrolytic boron nitride for THz applications. Optical Materials Express 3:260–269

    Google Scholar 

  • Omar M (2007) Lattice thermal expansion for normal tetrahedral compound semiconductors. Mater Res Bull 42:319–326

    Google Scholar 

  • Omar M (2012) Models for mean bonding length, melting point and lattice thermal expansion of nanoparticle materials. Mater Res Bull 47:3518–3522

    Google Scholar 

  • Omar M (2016) Structural and thermal properties of elementary and binary tetrahedral semiconductor nanoparticles. Int J Thermophys 37:11

    Google Scholar 

  • Omar M, Taha H (2010) Effects of nanoscale size dependent parameters on lattice thermal conductivity in Si nanowire. Sadhana 35:177–193

    Google Scholar 

  • Ooi N, Rajan V, Gottlieb J, Catherine Y, Adams J (2006) Structural properties of hexagonal boron nitride. Modell Simul Mater Sci Eng 14:515

    Google Scholar 

  • Palla P, Uppu GR, Ethiraj AS, Raina JP (2016) Bandgap engineered graphene and hexagonal boron nitride for resonant tunnelling diode. Bull Mater Sci 39:1441–1451. https://doi.org/10.1007/s12034-016-1285-9

    Article  Google Scholar 

  • Post E (1953) On the characteristic temperatures of single crystals and the dispersion of the" debye heat waves”. Can J Phys 31:112–119

    Google Scholar 

  • Qader IN, Omar M (2017) Carrier concentration effect and other structure-related parameters on lattice thermal conductivity of Si nanowires. Bull Mater Sci 40:599–607

    Google Scholar 

  • Qader IN, Abdullah BJ, Karim HH (2017) Lattice thermal conductivity of wurtzite bulk and zinc blende Cdse nanowires and nanoplayer. Eurasian J Sci Eng 3:9–26

    Google Scholar 

  • Qader I, Abdullah B, Hassan M, Mahmood P (2019) Influence of the size reduction on the thermal conductivity of bismuth nanowires. Eurasian J Sci Eng 4:55–65

    Google Scholar 

  • Qader IN, Abdullah BJ, Omar MS (2020) Range determination of the influence of carrier concentration on lattice thermal conductivity for bulk Si and nanowires. Aksaray Univ J Sci Eng 4:30–42

    Google Scholar 

  • Qader IN, Qadr HM, Ali PH (2021) Calculation of lattice thermal conductivity for Si fishbone nanowire using modified callaway model. Semiconductors 55:960–967. https://doi.org/10.1134/S1063782621070137

    Article  Google Scholar 

  • Raman C, Meneghetti P (2008) Boron nitride finds new applications in thermoplastic compounds. Plast Addit Compd 10:26–31

    Google Scholar 

  • Rand B, Appleyard SP, Yardim MF. (2012). Design and control of structure of advanced carbon materials for enhanced performance (Vol. 374): Springer Science & Business Media.

  • Rohr C, Boo J-H, Ho W (1998) The growth of hexagonal boron nitride thin films on silicon using single source precursor. Thin Solid Films 322:9–13

    Google Scholar 

  • Roy S, Zhang X, Puthirath AB, Meiyazhagan A, Bhattacharyya S, Rahman MM, Babu G, Susarla S et al (2021) Structure, properties and applications of two-dimensional hexagonal boron nitride. Adv Mater 33:2101589

    Google Scholar 

  • Shimada K, Sota T, Suzuki K (1998) First-principles study on electronic and elastic properties of BN, AlN, and GaN. J Appl Phys 84:4951–4958. https://doi.org/10.1063/1.368739

    Article  Google Scholar 

  • Shimada K, Sota T, Suzuki K (2011) Constant pressure first-principles molecular dynamics study on Bn, Ain. And Gan MRS Proces 482:869. https://doi.org/10.1557/PROC-482-869

    Article  Google Scholar 

  • Sichel EK, Miller RE, Abrahams MS, Buiocchi CJ (1976) Heat capacity and thermal conductivity of hexagonal pyrolytic boron nitride. Phys Rev B 13:4607–4611. https://doi.org/10.1103/PhysRevB.13.4607

    Article  Google Scholar 

  • Solozhenko V, Will G, Elf F (1995) Isothermal compression of hexagonal graphite-like boron nitride up to 12 GPa. Solid State Commun 96:1–3

    Google Scholar 

  • Stansfeld J (2003) 5.7 In Situ Density Measurements. Measurement of the Thermodynamic Properties of Single Phases: 208

  • Sueyoshi H, Rochman NT, Kawano S (2003) Damping capacity and mechanical property of hexagonal boron nitride-dispersed composite steel. J Alloy Compd 355:120–125

    Google Scholar 

  • Thiemann FL, Rowe P, Müller EA, Michaelides A (2020) Machine learning potential for hexagonal boron nitride applied to thermally and mechanically induced rippling. J Phys Chem C 124:22278–22290. https://doi.org/10.1021/acs.jpcc.0c05831

    Article  Google Scholar 

  • Uchida Y, Nakandakari S, Kawahara K, Yamasaki S, Mitsuhara M, Ago H (2018) Controlled growth of large-area uniform multilayer hexagonal boron nitride as an effective 2D substrate. ACS Nano 12:6236–6244. https://doi.org/10.1021/acsnano.8b03055

    Article  Google Scholar 

  • Watanabe S, Miyake S, Murakawa M (1991) Tribological properties of cubic, amorphous and hexagonal boron nitride films. Surf Coat Technol 49:406–410

    Google Scholar 

  • Wise SS, Margrave JL, Feder HM, Hubbard WN (1966) Fluorine bomb calorimetry. XVI. The de 1,2. J Phys Chem 70:7–10. https://doi.org/10.1021/j100873a002

    Article  Google Scholar 

  • Yang C, Li G, Jiang Q (2003a) Effect of pressure on melting temperature of silicon. J Phys: Condens Matter 15:4961

    Google Scholar 

  • Yang C, Li J, Jiang Q (2003b) Effect of pressure on melting temperature of silicon determined by Clapeyron equation. Chem Phys Lett 372:156–159

    Google Scholar 

  • Yang C, Li J, Jiang Q (2004) Temperature–pressure phase diagram of silicon determined by Clapeyron equation. Solid State Commun 129:437–441

    Google Scholar 

  • Yang C, Xiao M, Li W, Jiang Q (2006) Size effects on debye temperature, einstein temperature, and volume thermal expansion coefficient of nanocrystals. Solid State Commun 139:148–152

    Google Scholar 

  • Yang C, Jiang Q. (2005) Effect of pressure on melting temperature of silicon and germanium. Paper presented at the Materials Science Forum

  • Yuan J, Zhang K, Zhang X, Li X, Li T, Li Y, Ma M, Shi G (2013) Thermal characteristics of Mg–Zn–Mn alloys with high specific strength and high thermal conductivity. J Alloy Compd 578:32–36

    Google Scholar 

  • Zedlitz R, Heintze M, Schubert M (1996) Properties of amorphous boron nitride thin films. J Non-Cryst Solids 198:403–406

    Google Scholar 

  • Zhang Y, He X, Han J, Du S (2001) Combustion synthesis of hexagonal boron–nitride-based ceramics. J Mater Process Technol 116:161–164

    Google Scholar 

  • Zhang Y, Choi JR, Park S-J (2018) Enhancing the heat and load transfer efficiency by optimizing the interface of hexagonal boron nitride/elastomer nanocomposites for thermal management applications. Polymer 143:1–9

    Google Scholar 

  • Zhao M, Jiang Q (2004) Melting and surface melting of low-dimensional In crystals. Solid State Commun 130:37–39

    Google Scholar 

  • Zhou H, Zhu J, Liu Z, Yan Z, Fan X, Lin J, Wang G, Yan Q et al (2014) High thermal conductivity of suspended few-layer hexagonal boron nitride sheets. Nano Res 7:1232–1240. https://doi.org/10.1007/s12274-014-0486-z

    Article  Google Scholar 

Download references

Acknowledgements

The authors are appreciative of the financial support they received from the University of Raparin and Salahaddin University-Erbil.

Author information

Authors and Affiliations

Authors

Contributions

INQ did the computations. DMM, HHR, and BJA wrote the manuscript. MSO revised the manuscript.

Corresponding author

Correspondence to Ibrahim Nazem Qader.

Ethics declarations

Conflict of interest

The authors have no conflicts to disclose.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qader, I.N., Mamand, D.M., Rasul, H.H. et al. The Effects of Pressure and Size Parameter on the Lattice Thermal Conductivity in Multilayer Hexagonal Boron Nitride. Iran J Sci Technol Trans Sci 46, 1705–1718 (2022). https://doi.org/10.1007/s40995-022-01370-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-022-01370-x

Keywords

Navigation