Skip to main content

Model Prediction Study of the Nearest Neighbor Spacing Momentum Distributions of Central Nucleus–Nucleus Interactions

Abstract

We investigate the central nucleus–nucleus collisions at 4.2 A GeV/c exploiting the simulated results, obtained from ultra-relativistic quantum molecular dynamic model code1.3. The method used for quantitative analysis is free of the undesired background contributions and needs no prior information. The procured results reveal that the nearest neighbor momentum spacing correlation among the secondary particles sharply decreases with increasing particle multiplicity. The critical values of the multiplicity can be linked with central collisions and employed as a tool to adjust the centrality.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  • Abreu MC et al (1997) Jψ and Drell-Yan cross-sections in Pb-Pb interactions at 158 GeV/c per nucleon. Phys Lett B 410:327–336

    Google Scholar 

  • Abreu MC et al (2001) NA50 collaboration. Phys Lett B 499:85–96

    Google Scholar 

  • Agnese A, La Camera M, Wataghin A (1969) On the influence of the transverse momentum of the fireballs on the angular distribution of produced particles in high-energy collisions. Nuovo Cim A 59:71–80

    Google Scholar 

  • Aichelin J (1991) “Quantum” molecular dynamics—a dynamical microscopic n-body approach to investigate fragment formation and the nuclear equation of state in heavy ion collisions. Phys Rept 202:233–260

    Google Scholar 

  • Aichelin J, Stocker H (1986) Quantum molecular dynamics—A novel approach to N-body correlations in heavy ion collisions. Phys Lett B 176:14–19

    Google Scholar 

  • Aichelin J et al (1987) Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. Phys Rev Lett 58:1926

    Google Scholar 

  • Ajaz M (2019) pTspectra of charged hadrons in proton–proton collisions at √s = 200 GeV. Maryam Mod Phys Lett A 34:1950148

    Google Scholar 

  • Ajaz M et al (2012) Searching for the properties of nuclear matter using proton–carbon and deuteron–carbon collisions at 4.2 A GeV/c. Int J Mod Phys E 21:1250095

    Google Scholar 

  • Ajaz M et al (2013a) Study of the behavior of the nuclear modification factor in freeze-out state. Chin Phys C 37:024101

    Google Scholar 

  • Ajaz M et al (2013b) Production of light flavored charged hadron in pp collisions at 900 GeV with hadron production models. Mod Phys Lett A 28:1350175

    Google Scholar 

  • Ajaz M et al (2013c) The nuclear transparency effect of π − -mesons in p + 12C-and d + 12C-interactions at 4.2 A GeV/c. J Phys G: Nucl Part Phys 40:055101

    Google Scholar 

  • Ajaz M et al (2016) Average characteristics of π-mesons in HeC and CC interactions at high energies. Int J Mod Phys E 25:1650019

    Google Scholar 

  • Ajaz M et al (2018a) pT spectra of charged hadrons in proton–proton collisions at√s = 200 GeV. Mod Phys Lett A 33:1850038

    Google Scholar 

  • Ajaz M et al (2018b) Comparison of different hadron production models for the study of,π±, K± protons and antiprotons production in proton–carbon interactions at 90 GeV/c. Mod Phys Lett A 33:1850079

    Google Scholar 

  • Ajaz M et al (2019a) Models prediction of particles ratio in pp collisions at√ s = 900 GeV. Indian J Phys. https://doi.org/10.1007/s12648-019-01504-9

    Article  Google Scholar 

  • Ajaz M et al (2019b) Int J Theor Phys 58:2027–2032

    Google Scholar 

  • Ajaz M et al (2019c) Charged particles pT spectra and the correlation between pT and all charged particles at √S = 900 GeV. Mod Phys Lett A 34:1950150

    Google Scholar 

  • Ajaz M, Tufail M, Ali Y (2019d) Production of light flavored charged hadron in pp collisions at 900 GeV with hadron production models. Mod Phys Lett A 34:1950100

    Google Scholar 

  • Ajaz M et al (2019e) Transverse momentum and nuclear modification factor distributions of charged particles in p + Pb and p + p collisions at √sNN = 5.02 TeV. Mod Phys Lett A 34:1950090

    Google Scholar 

  • Ajaz M et al (2019f) Study of hadrons produced in proton—carbon interactions at 120 GeV/c using hadron-production models. Phys Atom Nucl 82:291–298

    Google Scholar 

  • Ajaz M et al (2020a) Study of the production of strange particles in proton–proton collisions at√ s = 0.9 TeV. Arab J Sci Eng 45:411–416

    Google Scholar 

  • Ajaz M et al (2020b) Testing of model predictions of forward energy flow in pp collisions at √s = 7 TeV. Mod Phys Lett A 35:1950349

    MathSciNet  Google Scholar 

  • Ali Q et al (2018) Study of transverse momentum distributions in p–Pb interactions at 0.9 TeV and 5.02 TeV. Mod Phys Lett A 33:1850179

    Google Scholar 

  • Ali Q et al (2019a) Distributions of charged particles’ transverse momentum and pseudorapidity in pp collisions at 0.9 TeV. JETP Lett 109:495–498

    Google Scholar 

  • Ali Q et al (2019b) Transverse momentum and nuclear modification factor distributions of charged particles in p + Pb and p + p collisions at √sNN = 5.02 TeV. Mod Phys Lett A 34:1950120

    Google Scholar 

  • Ali Y et al (2019c) Study of pion kaon and proton in proton–carbon interactions at 158 GeV/c using hadron production models. Mod Phys Lett A 34:1950078

    Google Scholar 

  • Ali Y et al (2019d) Study of pseudorapidity and transverse-momentum distributions of charged particles in pp interactions at√ s = 13 TeV Using hadron production models. Int J Theor Phys 58:931–938

    MATH  Google Scholar 

  • Anikina M et al (1986) Pion production in inelastic and central nuclear collisions at high energy. Phys Rev C 33:895

    Google Scholar 

  • Barrette J et al (1994) Centrality dependence of longitudinal and transverse baryon distributions in ultrarelativistic nuclear collisions. Phys Rev C 50:3047

    Google Scholar 

  • Bass SA et al (1998) Microscopic models for ultrarelativistic heavy ion collisions. Prog Part Nucl Phys 41:255–369

    Google Scholar 

  • Bertini HW, Gabriel TA, Santoro RT (1974) Predicted proton spectrum at forward angles for 29.4-GeV nitrogen on carbon. Phys Rev C 9:522

    Google Scholar 

  • Bleicher M et al (1999) Relativistic hadron-hadron collisions in the ultra-relativistic quantum molecular dynamics model. J. Phys. G 25:1859

    Google Scholar 

  • Bondorf JP et al (1976) Classical microscopic description of U + U collisions. Phys Lett B 65:217–220

    Google Scholar 

  • Dabrowska A et al (1993) Particle production in interactions of 200 GeV/nucleon oxygen and sulfur nuclei in nuclear emulsion. Phys Rev D 47:1751

    Google Scholar 

  • Desbois J (1987) Heavy ion collisions and the site-bond percolation. Nucl Phys A 466:724–748

    Google Scholar 

  • Hecman HH et al (1978) Search for a signal on intermediate baryon systems formation in hadron-nuclear and nuclear-nuclear interactions at high energies. Phys Rev C 17:1651

    Google Scholar 

  • Khan KH et al (2014) Light nuclei formation in 12CC collisions at 42A GeV/c. Mod Phys Lett A 29:1450063

    Google Scholar 

  • Khan KH et al (2016) The study of light nuclei production in different interactions at 4.2 AGeV/c. Can J Phys 94:693–696

    Google Scholar 

  • Khan R et al (2019a) Transverse momentum distributions of pions, kaons and protons in p–p interactions at 2.76 TeV. Int J Theor Phys 58:1901–1907

    MATH  Google Scholar 

  • Khan R et al (2019b) Model predictions of charged-particle azimuthal distributions and forward-backward correlations in pp interactions at GeV. Commun Theor Phys 71:1172–1178

    Google Scholar 

  • Nazmitdinov RG et al (2009) Analysis of nucleus-nucleus collisions at high energies and random matrix theory. Phys Rev C 79:054905

    Google Scholar 

  • Ogilvie CA (1999) Dense, strongly interacting matter: strangeness in heavy-ion reactions 1–10 A GeV. J Phys G: Nucl Part Phys 25:159

    Google Scholar 

  • Peilert G et al (1989) Multifragmentation, fragment flow, and the nuclear equation of state. Phys Rev C 39:1402

    Google Scholar 

  • Sandoval A et al (1980) Energy dependence of multi-pion production in high-energy nucleus-nucleus collisions. Phys Rev Lett 45:874

    Google Scholar 

  • Satz H (1999) The onset of deconfinement in nuclear collisions. Nucl Phys A 661:104–118

    MATH  Google Scholar 

  • Shahaliev EI et al (2006) Random matrix theory and analysis of nucleus-nucleus collision at high energies. Phys Atom Nucl 69(1):142–146

    Google Scholar 

  • Suleymanov MK et al (2009) Some properties of the central π--meson carbon interactions at 40 GeV/c. Int J Mod Phys A 24:544–548

    Google Scholar 

  • Suleymanov MK et al (2011) Search for a signal on QCD critical point in central nucleusnucleus collisions. Indian J Phys 85:1047–1050

    Google Scholar 

  • Ullah S, Ajaz M, Ali Y (2018a) Spectra of strange hadrons and their role in neutrinos flux predictio. EPL 123:31001

    Google Scholar 

  • Ullah S et al (2018b) π±, K± protons and antiprotons production in proton–carbon interactions at 31 GeV/c using hadron production models. Int J Mod Phys A 33:1850108

    Google Scholar 

  • Ullah S et al (2019) Hadron production models’ prediction for p T distribution of charged hadrons in pp interactions at 7 TeV. Sci Rep 9:11811

    Google Scholar 

  • Wazir Z et al (2014) Centrality dependence of pseudorapidity spectra of charged particles produced in the nucleus–nucleus collisions at high energies. Indian J Phys 88:723–726

    Google Scholar 

  • Wazir Z et al (2019) Transverse momentum distributions of charged hadrons produced in he 12 C collisions at 4.2 A GeV/c. Phys Part Nucl Lett 16:662–666

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ajaz.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wazir, Z., Kanwal, S., Khan, A. et al. Model Prediction Study of the Nearest Neighbor Spacing Momentum Distributions of Central Nucleus–Nucleus Interactions. Iran J Sci Technol Trans Sci 44, 1225–1230 (2020). https://doi.org/10.1007/s40995-020-00918-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40995-020-00918-z

Keywords

  • Central nucleus–nucleus collisions
  • Ultra-relativistic quantum molecular dynamic model
  • Particle multiplicity
  • Centrality
  • Correlations