An Investigation on Viscosity of La0.6 Sr0.4 MnO3/Water Nanofluid in the Presence of Magnetic Field

Abstract

In this paper, the impact of the magnetic field on the viscosity of La0.6 Sr0.4 MnO3/water magnetic nanofluid is studied from the experimental point of view. These experiments were carried out in the two following conditions: temperature range of 10–50 °C and the volume fraction of 0–1%. The results showed that with increase in the volume fractions of nanoparticles, the viscosity of the sample increased. Moreover, with increase in the temperature, viscosity decreased in both conditions of the presence and absence of the magnetic field. Furthermore, the viscosity of the magnetic nanofluid increased by increasing the magnetic field. It is therefore concluded that the magnetic field is an effective factor in the viscosity of the magnetic nanofluids, by which magnetic nanofluid flow will be controllable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Abareshi M, Goharshadi EK, MojtabaZebarjad S, KhandanFadafan H, Youssefi A (2010) Fabrication, characterization and measurement of thermal conductivity of Fe3O4 nanofluids. J Magn Magn Mater 322:3895–3901

    Article  Google Scholar 

  2. Amini M, Amani P, Kasaeian A, Mahian O, Kasaeian F (2017) Experimental study on viscosity of pinel-type manganese ferrite nanofluid in attendance of magnetic field. J Magn Magn Mater 428:457–463

    Article  Google Scholar 

  3. Bahiraei M, Hangi M (2014) Natural convection of magnetic nanofluid in a cavity under non-uniform magnetic field: a novel application. J Supercond Nov Magn 272:587–594

    Article  Google Scholar 

  4. Bahiraei M, Hangi M (2015) Flow and heat transfer characteristics of magnetic nanofluids: a review. J Magn Magn Mater 374:125–138

    Article  Google Scholar 

  5. Bakeer DE-S, Abou-Aly A, Mohammed N, Awad R, Hasebbo M (2017) Characterization and magnetic properties of nanoferrite ZnFe2−x La x O4 prepared by co-precipitation method. J Supercond Novel Magn 30:893–902

    Article  Google Scholar 

  6. Bobo JF, Gabillet L, Bibes M (2004) Recent advances in nanomagnetism and spin electronics. J Phys: Condens Matter 16:S471–S496

    Google Scholar 

  7. Chandrasekar M, Suresh S, ChandraBose A (2010) Experimental investigations and theoretical determination of thermal conductivity and viscosity of Al2O3/water nanofluid. J Exp Therm Fluid Sci 34:210–216

    Article  Google Scholar 

  8. Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluid with nanoparticles. In: Developments and applications of non-newtonian flows, ASME, New York, pp 99–105

  9. Ehsani MH, Raoufi T (2018) Effect of Gd substitution on the critical scaling of the ferromagnetic transition of La0.6 − x Gdx Sr0.4 MnO3(x = 0, 0.05, 0.1) manganite. J Alloys Compd 769:649–659

    Article  Google Scholar 

  10. Ehsani MH, Kameli P, Ghazi ME, Razavi FS, Taheri M (2014) Structural and magnetic characterization of La0.8Sr0.2MnO3 nanoparticles prepared via a facile microwave-assisted method. J Solid State Chem 215:1–7

    Article  Google Scholar 

  11. Ehsani MH, Esmaeili S, Aghazadeh M, Kameli P, Karimzadeh I (2019) Magnetic evaluation of the nanoparticles coated with polyvinylpyrrolidone and polyvinyl chloride nanoparticles synthesized by electro-deposition method for hyperthermia application. J Supercond Novel Magn 32:2021–2030

    Article  Google Scholar 

  12. Farrukh A, Hafiz MA, Tayyab RSH, Hamza B, Janjua MM, Uzair S, Amer M (2019) Nanofluid: potential evaluation in automotive radiator. J Mol Liq. https://doi.org/10.1016/j.molliq.2019.112014

    Article  Google Scholar 

  13. Ghasemian M, Ashrafi ZN, Goharkhah M, Ashjaee M (2014) Heat transfer characteristics of Fe3O4 ferrofluid flowing in a mini channel under constant and alternating magnetic fields. J Magn Magn Mater 381:158–167

    Article  Google Scholar 

  14. Gholizadeh A, Yousefi H, Malekzadeh A, Pourarian F (2016a) Calcium and strontium substituted lanthanum manganite cobaltite [La1 − x(Ca, Sr)xMn0.5Co0.5O3] nano-catalysts for low temperature CO oxidation. Ceram Int 42:12055–12063

    Article  Google Scholar 

  15. Gholizadeh A, Malekzadeh A, Ghiyasi M (2016b) Structural and magnetic features of La0.7Sr0.3Mn1−xCoxO3 nano-catalysts for ethane combustion and CO oxidation. Ceram Int 42:5707–5717

    Article  Google Scholar 

  16. Hamdi R, Tozri A, Dhahri E, Bessais L (2017) Brilliant effect of Ca substitution in the appearance of magnetic memory in Dy0.5(Sr1−xCax)0.5MnO3 (x = 0.3) manganites. Intermetallics 89:118–122

    Article  Google Scholar 

  17. HemmatEsfe M, Saedodin S (2014) An experimental investigation and new correlation of viscosity of ZnO–EG nanofluid at various temperatures and different solid volume fractions. Exp Therm Fluid Sci 55:1–5

    Article  Google Scholar 

  18. Keblinski P (2009) Thermal conductivity of nanofuids. In: Volz S (ed) Thermal nnosystems and nanomaterials. Springer, Berlin

    Google Scholar 

  19. Kole M, Dey TK (2010) Viscosity of alumina nanoparticles dispersed in car engine coolant. Exp Therm Fluid Sci 34(6):677–683

    Article  Google Scholar 

  20. Kuzhir P (2008) Free boundary of lubricant film in ferrofluid journal bearings. Tribol Int 41:256–268

    Article  Google Scholar 

  21. Li Q, Xuan Y (2009) Experimental investigation on heat transfer characteristics of magnetic fluid flow around a fine wire under the influence of an external magnetic field. Exp Therm Fluid Sci 334:591–596

    Article  Google Scholar 

  22. Li Y, Zhang H, Liu X, Chen Q, Chen Q (2019) Electrical and magnetic properties of La1−xSrxMnO3 (0.1 ≤ x ≤ 0.25) ceramics prepared by sol–gel technique. Ceram Int 2019:16323–16330

    Article  Google Scholar 

  23. Maddah AA, Hojjat Y, Karafi MR, Ashory MR (2017) Reduction of magneto rheological dampers stiffness by incorporating of an eddy current damper. J Sound Vib 396:51–68

    Article  Google Scholar 

  24. Mare T, Halelfadl S, Van Vaerenberg S, Estellé P (2015) Unexpected sharp peak in thermal conductivity of carbon nanotubes water based nanofluids. Int Commun Heat Mass Transf 66:80–83

    Article  Google Scholar 

  25. Mukherjee S, ChandraMishara P, Chaudhuri P (2019) Thermo-economic performance analysis of Al2O3-water nanofluids an experimental investigation. J Mol Liq 294:112200–112250

    Google Scholar 

  26. Pastoriza M, Casanova GC, Legido J, Piñeiro M (2011) CuO in water nanofluid influence of particle size and polydispersity on volumetric behaviour and viscosity. Fluid Phase Equilib 300:188–196

    Article  Google Scholar 

  27. Raoufi T, Ehsani MH, Khoshnoud DS (2017) Critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.6Sr0.4MnO3 ceramic: a comparison between sol-gel and solid state process. Ceram Int 43:5204–5215

    Article  Google Scholar 

  28. RezzanKose A, Koser H (2012) Ferrofluid mediated nanocytometry. Lab Chip 12:190–196

    Article  Google Scholar 

  29. Roca AG, Costo R, Rebolledo F, Verdaguer SV, Tartaj P, GonzalezCarreno T, Moales MP, Serna CJ (2009) Progress in the preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 42:220301–220302

    Article  Google Scholar 

  30. SamKim Y, HanKim Y (2003) Application of ferro-cobalt magnetic fluid for oil sealing. J Magn Magn Mater 267:105–110

    Article  Google Scholar 

  31. Sekhar YR, Sharma KV (2013) Study of viscosity and specific heat capacity characteristics of water-based Al2O3 nanofluids at low particle concentrations. J Exp Nanosci 102:86–102

    Google Scholar 

  32. Sreedhar BK, NirmalKumar R, Sharma P, Ruhela S, Philip J, Sundarraj SI, Chakraborty N, Mohana M, Sharma V, Padmakumar G, Nashine BK, Rajan KK (2013) Development of active magnetic bearings and ferrofluid seals toward oil free sodium pumps. Nucl Eng Des 265:1166–1174

    Article  Google Scholar 

  33. SyamSundar L, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass Transf 44:7–14

    Article  Google Scholar 

  34. Wang L, Wang Y, Yan X, Wang X, Feng B (2016) Investigation on viscosity of Fe3O4 nanofluid under magnetic field. Int Commun Heat Mass Transf 72:23–28

    Article  Google Scholar 

  35. Wen D, Lin G, Vafaei S, Zhang K (2008) Review of nanofluids for heat transfer applications. Apasriculorogy 7:141–150

    Google Scholar 

  36. Wong KV, DeLeon O (2017) Nanotechnology and energy. Jenny Stanford Publishing, New York, pp 105–132

    Google Scholar 

  37. Xu Y, Memmert U, Hartmann U (2001) Magnetic field sensors from polycrystalline manganites. Sens Actuat A 91:26–29

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. H. Ehsani.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Azizi, S., Ehsani, M.H. & Ramezanzadeh, A. An Investigation on Viscosity of La0.6 Sr0.4 MnO3/Water Nanofluid in the Presence of Magnetic Field. Iran J Sci Technol Trans Sci 44, 895–902 (2020). https://doi.org/10.1007/s40995-020-00873-9

Download citation

Keywords

  • Nanofluid
  • Magnetic nanoparticles
  • Viscosity
  • Magnetic effect