Skip to main content

Weak Slater Qualification for Nonconvex Multiobjective Semi-infinite Programming

Abstract

We consider a nonsmooth multiobjective semi-infinite programming problem with a feasible set defined by inequality constraints, MSIP for short. First, we introduce the weak Slater constraint qualification and derive the Karush–Kuhn–Tucker types necessary and sufficient conditions for (weakly, properly) efficient solution of the considered problem. Then, we introduce a dual of Mond–Weir type and present (weak and strong) duality results for MSIP. All results are given in terms of Clarke subdifferential.

This is a preview of subscription content, access via your institution.

References

  1. Caristi G, Kanzi K (2015) Karush–Kuhn–Tuker type conditions for optimality of non-smooth multiobjective semi-infinite programming. Int J Math Anal 9:1929–1938

    Article  Google Scholar 

  2. Caristi G, Ferrara M, Stefanescu A (2006) Mathematical programming with \((\rho,\Phi )\)-invexity. In: Konnor IV, Luc DT, Rubinov AM (eds) Generalized convexity and related topics. Lecture notes in economics and mathematical systems. Springer, Berlin, pp 167–176

    Google Scholar 

  3. Caristi G, Ferrara M, Stefanescu A (2010) Semi-infinite multiobjective programming with generalized invexity. Math Rep 62:217–233

    MATH  Google Scholar 

  4. Chuong TD, Kim DS (2014) Nonsmooth semi-infinite multiobjective optimization problems. J Optim Theory Appl 160:748–762

    MathSciNet  Article  Google Scholar 

  5. Clarke FH (1983) Optimization and nonsmooth analysis. Wiley-Interscience, Hoboken

    MATH  Google Scholar 

  6. Ehrgott M (2005) Multicriteria optimization. Springer, Berlin

    MATH  Google Scholar 

  7. Gao XY (2012) Necessary optimality and duality for multiobjective semi-infinite programming. J Theory Appl Inf Technol 46:347–353

    Google Scholar 

  8. Goberna MA, Kanzi N (2018) Optimality conditions in convex multiobjective SIP. Math Program 164:167–191

    MathSciNet  Article  Google Scholar 

  9. Goberna MA, Guerra-Vazquez F, Todorov MI (2013) Constraint qualifications in convex vector semi-infinite optimization. Eur J Oper Res 249:12–21

    MathSciNet  Article  Google Scholar 

  10. Goberna MA, Guerra-Vazquez F, Todorov MI (2016) Constraint qualifications in linear vector semi-infinite optimization. Eur J Oper Res 227:32–40

    MathSciNet  Article  Google Scholar 

  11. Gopfert A, Riahi H, Tammer C, Zalinescu C (2003) Variational methods in partially ordered spaces. Springer, New York

    MATH  Google Scholar 

  12. Guerraggio A, Molho E, Zaffaroni A (1994) On the notion of properly efficiency in vector optimization. J Optim Theory Appl 82:1–21

    MathSciNet  Article  Google Scholar 

  13. Hettich R, Kortanek O (1993) Semi-infinite programming: theory, methods, and applications. SIAM Rev 35:380–429

    MathSciNet  Article  Google Scholar 

  14. Hiriart-Urruty JB, Lemarechal C (1991) Convex analysis and minimization algorithms, I & II. Springer, Berlin

    MATH  Google Scholar 

  15. Jeyakumar V (1988) Equivalence of saddle-points and optima, and duality for a class of nonsmooth non-convex problems. J Math Anal Appl 130:334–343

    MathSciNet  Article  Google Scholar 

  16. Kanzi N (2013) Lagrange multiplier rules for non-differentiable DC generalized semi-infinite programming problems. J Glob Optim 56:417–430

    MathSciNet  Article  Google Scholar 

  17. Kanzi N (2014) Constraint qualifications in semi-infinite systems and their applications in nonsmooth semi-infinite problems with mixed constraints. SIAM J Optim 24:559–572

    MathSciNet  Article  Google Scholar 

  18. Kanzi N (2015) Karush–Kuhn–Tucker types optimality conditions for non-smooth semi-infinite vector optimization problems. J Math Ext 9:45–56

    MathSciNet  MATH  Google Scholar 

  19. Kanzi N (2018) Necessary and sufficient conditions for (weakly) efficient of nondifferentiable multi-objective semi-infinite programming. Iran J Sci Technol Trans Sci. https://doi.org/10.1007/s40995-017-0156-6

    MathSciNet  Article  MATH  Google Scholar 

  20. Kanzi N, Nobakhtian S (2017) Nonsmooth multiobjective semi-infinite problems with mixed constraints. Pac J Optim 13:43–53

    MathSciNet  MATH  Google Scholar 

  21. Kanzi N, Soleimani-damaneh M (2016) Slater CQ, optimality and duality for quasiconvex semi-infinite optimization problems. J Math Anal Appl 434:638–651

    MathSciNet  Article  Google Scholar 

  22. Kanzi N, Shaker Ardekani J, Caristi G (2018) Optimality, scalarization and duality in linear vector semi-infinite programming. Optimization 67:523–536

    MathSciNet  Article  Google Scholar 

  23. Kapoor M (2016) Vector optimization over cones involving support functions using generalized \((\Phi,\rho )\)-convexity. Opsearch. https://doi.org/10.1007/s12597-016-0279-0

    Article  Google Scholar 

  24. Kisiel K (2009) Characterization theorems associated with \((F, \rho )\)-convex and \((F, \rho )\)-pseudoconvex functions. Numer Funct Anal Optim 30:773–783

    MathSciNet  Article  Google Scholar 

  25. López MA, Vercher E (1983) Optimality conditions for nondifferentiable convex semi-infinite programming. Math Program 27:307–319

    MathSciNet  Article  Google Scholar 

  26. Mond B, Weir T (1981) Generalized concavity and duality. In: Schaible S, Ziemba WT (eds) Generalized concavity in optimization and economics. Academic Press, New York, pp 263–279

    Google Scholar 

  27. Nobakhtian S (2008) Generalized \((F, \rho )\)-convexity and duality in nonsmooth problems of multiobjective optimization. J Optim Theory Appl 136:61–68

    MathSciNet  Article  Google Scholar 

  28. Preda V (1992) On efficiency and duality of multiobjective programs. J Math Anal Appl 166:356–377

    MathSciNet  Article  Google Scholar 

  29. Rockafellar RT, Wets JB (1998) Variational analysis. Springer, New York

    Book  Google Scholar 

  30. Vial JP (1983) Strong and weak convexity of sets and functions. Math Oper Res 8:231–259

    MathSciNet  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Nader Kanzi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Habibi, S., Kanzi, N. & Ebadian, A. Weak Slater Qualification for Nonconvex Multiobjective Semi-infinite Programming. Iran J Sci Technol Trans Sci 44, 417–424 (2020). https://doi.org/10.1007/s40995-020-00835-1

Download citation

Keywords

  • Semi-infinite programming
  • Multiobjective optimization
  • Slater constraint qualification
  • Optimality conditions
  • Duality results

Mathematics Subject Classification

  • 90C34
  • 90C40
  • 49J52