A Reliable Numerical Analysis for Stochastic Hepatitis B Virus Epidemic Model with the Migration Effect

Abstract

The dynamics of an infectious disease in a population has a stochastic nature. Considering this stochastic behavior is more desirable when modeling the epidemics. Analyzing a stochastic model gives more insight as compared to its deterministic part only. This work presents a reliable numerical analysis for stochastic hepatitis B virus epidemic model with the migration effect. The outcomes of stochastic hepatitis B model are compared with its corresponding deterministic part. The dynamics of stochastic model is dependent upon a parameter \(H^{*}\), called basic reproductive number. As the value of \(H^{*}\) changes from greater than 1 to less than 1, the dynamics of disease switches from endemic to infection-free state. In this paper, a structure-preserving numerical method is proposed for the analysis of stochastic hepatitis B model. The results obtained using MATLAB programs are compared with existing schemes in the literature which have certain limitations regarding stability and dynamical consistency. The proposed scheme remains stable and consistent for all choices of parameter values.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

References

  1. Abu O, Emeje MA (2017) Modelling hepatitis B virus transmission dynamics in a heterosexual population on complex graphs. J Sci Eng Res 4(10):7–15

    Google Scholar 

  2. Ahmed F, Foster GR (2010) Global hepatitis, migration and its impact on Western healthcare. Gut 59(8):1009–1011

    Article  Google Scholar 

  3. Allen LJ, Burgin A (2000) Comparison of deterministic and stochastic SIS and SIR models in discrete time. Math Biosci 163:01–33

    MathSciNet  Article  MATH  Google Scholar 

  4. Allen JE, Allen LJ, Arciniega A (2008) Greenwood construction of equivalent stochastic differential equation models. Stoch Anal Appl 26(2):274–297

    MathSciNet  Article  MATH  Google Scholar 

  5. Anderson RM, May RM (1991) Infectious disease of humans, dynamics and control. Oxford University Press, Oxford

    Google Scholar 

  6. Baleanu D, Jajarmi A, Bonyah E, Hajipour M (2018) New aspects of poor nutrition in the life cycle within the fractional calculus. Adv Differ Equ 1:230

    MathSciNet  Article  MATH  Google Scholar 

  7. Bayram M, Partal T, Buyukoz GO (2018) Numerical methods for simulation of stochastic differential equations. Adv Differ Equ 2018:17

    MathSciNet  Article  MATH  Google Scholar 

  8. Britton T (2010) Stochastic epidemic models. J Math Biosci 225(1):24–35

    MathSciNet  Article  MATH  Google Scholar 

  9. Cai L, Li X (2010) Global analysis of a vector-host epidemic model with nonlinear incidences. J Appl Math Comput 217:3531–3541

    MathSciNet  Article  MATH  Google Scholar 

  10. Cresson J, Pierret F (2014) Nonstandard finite difference scheme preserving dynamical properties. arXiv Preprint arXiv, pp 1410–6661

  11. Cvjetanovic B, Grab K (1971) Epidemiological model of typhoid fever and its use in planning and evaluation of anti-typhoid immunization and sanitation programs. Bull World Health Org 45(1):53

    MATH  Google Scholar 

  12. Deepmala (2014) A study on fixed point theorems for nonlinear contractions and its applications. Ph.D. Thesis, Pt. Ravishankar Shukla University, Raipur 492 010, Chhatisgarh, India

  13. Diekmann O, Heesterbeek JAP (2000) Mathematical epidemiology of infectious diseases: model building, analysis and interpretation. Wiley series in mathematical and computational biology. Wiley, Chichester

    Google Scholar 

  14. Driessche PVD, Watmough J (2002) Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission. Math Biosci 180:29–48

    MathSciNet  Article  MATH  Google Scholar 

  15. Gard TC (1988) Introduction to stochastic differential equations. Marcel Dekker, New York

    Google Scholar 

  16. Jajarmi A, Baleanu D (2018) A new fractional analysis on the interaction of HIV with CD4+ T-cells. Chaos Solitons Fractals 113:221–229

    MathSciNet  Article  MATH  Google Scholar 

  17. Karatzas I, Shreve SE (1991) Brownian motion and stochastic calculus, 2nd edn. Springer, Berlin

    Google Scholar 

  18. Khan AM, Islam S, Arif M, Haq Z (2013) Transmission model of hepatitis B virus with the migration effect. BioMed Res Int 2:90

    Google Scholar 

  19. Kloeden PE (1994) Numerical solution of SDE through computer experiments, vol 1. Springer, Berlin

    Google Scholar 

  20. Kloeden PE, Platen E (1992) Numerical solution of stochastic differential equations, vol 23. Springer, Berlin

    Google Scholar 

  21. Lasalle JP (1976) Stability of nonautonomous systems. Nonlinear Anal 1(1):83–90

    MathSciNet  Article  MATH  Google Scholar 

  22. Maier KP (2000) Hepatitis–Hepatitis folgen. Georg Thieme Verlag, Stuttgart

    Google Scholar 

  23. Mandell GL, Douglas RG, Bennett JE (1979) Principles and practice of infectious diseases. Wiley, New York

    Google Scholar 

  24. Maruyama G (1955) Continuous markov processes and stochastic equations. Rend Circ Mat Palermo 4(1):48–90

    MathSciNet  Article  MATH  Google Scholar 

  25. McMahon BJ, Alward WLM, Hall DB (1985) Acute hepatitis B virus infection: relation of age to the clinical expression of disease and subsequent development of the carrier state. J Infect Dis 151(4):599–603

    Article  Google Scholar 

  26. Medley GF, Lindop NA, Edmunds WJ, Nokes DJ (2001) Hepatitis-B virus endemicity heterogeneity catastrophic dynamics and control. Nat Med 7(5):619–624

    Article  Google Scholar 

  27. Mickens RE (1994) Nonstandard finite difference models of differential equations. World Scientific Publishing Cooperation, River Edge

    Google Scholar 

  28. Mickens RE (2005a) A fundamental principle for constructing nonstandard finite difference schemes for differential equations. J Differ Equ Appl 11(7):645–653

    MathSciNet  Article  MATH  Google Scholar 

  29. Mickens RE (2005b) Advances in applications of nonstandard finite difference schemes. World Scientific Publishing Cooperation, Hackensack

    Google Scholar 

  30. Mishra VN (2007) Some problems on approximations of functions in banach spaces. Ph.D. Thesis, Indian Institute of Technology, Roorkee 247 667, Uttarakhand

  31. Mishra LN (2017) On existence and behavior of solutions to some nonlinear integral equations with applications. Ph.D. Thesis, National Institute of Technology, Silchar 788-010, Assam, India

  32. Mwasa A, Tchuenche JM (2011) Mathematical analysis of a cholera model with public health interventions. Biol Syst 105(3):190–200

    Google Scholar 

  33. Oksendal B (2003) Stochastic differential equations. Springer, Berlin

    Google Scholar 

  34. Pang J, Cui JA, Zhou X (2010) Dynamical behaviour of a hepatitis B virus transmission model with vaccination. J Theor Biol 265(4):572–578

    Article  Google Scholar 

  35. Pierret F (2015) A non-standard Euler Maruyama scheme. J Differ Equ Appl 1:1023–6198

    MathSciNet  Google Scholar 

  36. Platen E (1999) An introduction to numerical methods for stochastic differential equations. Acta Numer 8:197–246

    MathSciNet  Article  MATH  Google Scholar 

  37. Saif U, Khan MA, Farooq M (2018) A new fractional model for the dynamics of the hepatitis B virus using the Caputo-Fabrizio derivative. Eur Phys J Plus 133(6):237

    Article  Google Scholar 

  38. Shepard CW, Simard EP, Finelli L, Fiore AE, Bell BP (2006) Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev 28(1):112–125

    Article  Google Scholar 

  39. Shoji I, Ozaki T (1997) Comparative study of estimation methods for continuous time stochastic processes. J Time Ser Anal 18(5):485–506

    MathSciNet  Article  MATH  Google Scholar 

  40. Shoji I, Ozaki T (1998) Estimation for nonlinear stochastic differential equations by a local linearization method. Stoch Anal Appl 16:733–752

    MathSciNet  Article  MATH  Google Scholar 

  41. Singh J, Kumar D, Hammouch Z, Atangana A (2018) A fractional epidemiological model for computer viruses pertaining to a new fractional derivative. Appl Math Comput 316(2018):504–515

    MathSciNet  MATH  Google Scholar 

  42. Sümeyra U, Esmehan U, Necati O, Zakia H (2019) Mathematical analysis and numerical simulation for a smoking model with Atangana–Baleanu derivative. Chaos Solitons Fractals 118(2019):300–306

    MathSciNet  Google Scholar 

  43. Thornley S, Bullen C, Roberts M (2008) Hepatitis B in a high prevalence New Zealand population: a mathematical model applied to infection control policy. J Theor Biol 254(3):599–603

    MathSciNet  Article  MATH  Google Scholar 

  44. Vandana (2017) A study of dynamic inventory involving economic ordering of commodity. Ph.D. thesis, Pt. Ravishankar Shukla University Raipur, 492010, Chhattisgarh

  45. Vandana, Dubey R, Deepmala, Mishra LN, Mishra VN (2018) Duality relations for a class of a multi-objective fractional programming problem involving support functions. Am J Oper Res 8(2018):294–311

    Google Scholar 

  46. Wang K, Wang W, Song S (2008) Dynamics of an HBV model with diffusion and delay. J Theor Biol 253(1):36–44

    MathSciNet  Article  MATH  Google Scholar 

  47. Weng X, Zhang Y (2003) Infectious diseases. Fudan University Press, Shanghai

    Google Scholar 

  48. World Health Organization, Hepatitis B. WHO/CDS/CSR/ LYO/2002.2: Hepatitis B, http://www.who.int/csr/disease/hepa-titis/whocdscsrlyo20022/en/

  49. Wu J, Luo Y (2004) Infectious diseases. Central South University Press, Changsha

    Google Scholar 

  50. Xu R, Ma Z (2009) An HBV model with diffusion and time delay. J Theor Biol 257(3):499–509

    MathSciNet  Article  MATH  Google Scholar 

  51. Zafar Z, Rehan K, Mushtaq M (2017a) Fractional-order scheme for bovine babesiosis disease and tick populations. Adv Differ Equ 2017:86

    MathSciNet  Article  MATH  Google Scholar 

  52. Zafar Z, Rehan K, Mushtaq M, Rafiq M (2017b) HIV/AIDS epidemic fractional-order model. J Differ Equ Appl 23(7):1298–1315

    MathSciNet  Article  MATH  Google Scholar 

  53. Zafar Z, Rehan K, Mushtaq M, Rafiq M (2017c) Numerical treatment for nonlinear Brusselator chemical model. J Differ Equ Appl 23(3):521–538

    MathSciNet  Article  MATH  Google Scholar 

  54. Zhao S, Xu Z, Lu Y (2000) A mathematical model of hepatitis B virus transmission and its application for vaccination strategy in China. Int J Epidemiol 29(4):744–752

    Article  Google Scholar 

  55. Zou L, Zhang W, Ruan S (2010) Modelling the transmission dynamics and control of hepatitis B virus in China. J Theor Biol 262(2):330–338

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We are so thankful to the reviewers for their valuable remarks and suggestions.

Funding

No financial support is available for this research article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Muhammad Shoaib Arif.

Ethics declarations

Conflict of interest

The authors declare they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arif, M.S., Raza, A., Rafiq, M. et al. A Reliable Numerical Analysis for Stochastic Hepatitis B Virus Epidemic Model with the Migration Effect. Iran J Sci Technol Trans Sci 43, 2477–2492 (2019). https://doi.org/10.1007/s40995-019-00726-0

Download citation

Keywords

  • Hepatitis B virus
  • Stochastic differential equations
  • Stochastic numerical schemes
  • Stochastic NSFD scheme